Abstract
Turbulent phenomena are among the most striking effects that both classical and quantum fluids can exhibit. Although classical turbulence is ubiquitous in nature, the observation of quantum turbulence requires the precise manipulation of quantum fluids such as superfluid helium or atomic Bose–Einstein condensates. Here we demonstrate the turbulent dynamics of a two-dimensional quantum fluid of exciton–polaritons, hybrid light–matter quasiparticles, both by measuring the kinetic energy spectrum and showing the onset of vortex clustering. We demonstrate that the formation of clusters of quantum vortices is triggered by the increase of the incompressible kinetic energy per vortex, showing the tendency of the vortex-gas towards highly excited configurations despite the dissipative nature of our system. These results lay the basis for investigations of quantum turbulence in two-dimensional fluids of light.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the authors upon reasonable request.
Code availability
The codes used in this study will be provided upon reasonable request.
Change history
28 August 2024
A Correction to this paper has been published: https://doi.org/10.1038/s41566-024-01528-6
References
Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1995).
Hall, H. E., Vinen, W. F. & Shoenberg, D. The rotation of liquid helium II II. The theory of mutual friction in uniformly rotating helium II. Proc. R. Soc. Lond. A Math. Phys. Sci. 238, 215–234 (1956).
Barenghi, C. F., Skrbek, L. & Sreenivasan, K. R. Introduction to quantum turbulence. Proc. Natl Acad. Sci. USA 111, 4647–4652 (2014).
Feynman, R. P. in Progress in Low Temperature Physics Vol. 1 (ed Gorter, C. J.) Ch. 2, 17–53 (Elsevier, 1995).
Barenghi, C. F. & Parker, N. G. A Primer on Quantum Fluids (Springer, 2016).
Tsubota, M. Quantum turbulence. J. Phys. Soc. Jpn 77, 111006 (2008).
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).
Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).
White, A. C., Anderson, B. P. & Bagnato, V. S. Vortices and turbulence in trapped atomic condensates. Proc. Natl Acad. Sci. USA 111, 4719–4726 (2014).
Bradley, A. S. & Anderson, B. P. Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X 2, 041001 (2012).
Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Inverse energy cascade in forced two-dimensional quantum turbulence. Phys. Rev. Lett. 110, 104501 (2013).
Billam, T. P., Reeves, M. T., Anderson, B. P. & Bradley, A. S. Onsager-Kraichnan condensation in decaying two-dimensional quantum turbulence. Phys. Rev. Lett. 112, 145301 (2014).
Simula, T., Davis, M. J. & Helmerson, K. Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett. 113, 165302 (2014).
Groszek, A. J., Davis, M. J., Paganin, D. M., Helmerson, K. & Simula, T. P. Vortex thermometry for turbulent two-dimensional fluids. Phys. Rev. Lett. 120, 034504 (2018).
Han, J. & Tsubota, M. Onsager vortex formation in two-component Bose-Einstein condensates. J. Phys. Soc. Jpn 87, 063601 (2018).
Boffetta, G. & Ecke, R. E. Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–451 (2012).
Kraichnan, R. H. Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417 (1967).
Onsager, L. Statistical hydrodynamics. Il Nuovo Cimento 6, 279 (1949).
Johnstone, S. P. et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 364, 1267–1271 (2019).
Gauthier, G. et al. Giant vortex clusters in a two-dimensional quantum fluid. Science 364, 1264–1267 (2019).
Arecchi, F. T., Giacomelli, G., Ramazza, P. L. & Residori, S. Vortices and defect statistics in two-dimensional optical chaos. Phys. Rev. Lett. 67, 3749–3752 (1991).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
Fontaine, Q. et al. Observation of the Bogoliubov dispersion in a fluid of light. Phys. Rev. Lett. 121, 183604 (2018).
Ballarini, D. et al. Directional Goldstone waves in polariton condensates close to equilibrium. Nat. Commun. 11, 217 (2020).
Öztürk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).
Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).
Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).
Sanvitto, D. et al. All-optical control of the quantum flow of a polariton condensate. Nat. Photon. 5, 610–614 (2011).
Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).
Panico, R. et al. Dynamics of a vortex lattice in an expanding polariton quantum fluid. Phys. Rev. Lett. 127, 047401 (2021).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Alyatkin, S., Töpfer, J. D., Askitopoulos, A., Sigurdsson, H. & Lagoudakis, P. G. Optical control of couplings in polariton condensate lattices. Phys. Rev. Lett. 124, 207402 (2020).
Pieczarka, M. et al. Topological phase transition in an all-optical exciton-polariton lattice. Optica 8, 1084–1091 (2021).
Caputo, D. et al. Topological order and thermal equilibrium in polariton condensates. Nat. Mater. 17, 145–151 (2018).
Galantucci, L., Baggaley, A. W., Parker, N. G. & Barenghi, C. F. Crossover from interaction to driven regimes in quantum vortex reconnections. Proc. Natl Acad. Sci. USA 116, 12204–12211 (2019).
Zamora, A. et al. Kibble-Zurek mechanism in driven dissipative systems crossing a nonequilibrium phase transition. Phys. Rev. Lett. 125, 095301 (2020).
Berloff, N. G. Turbulence in exciton-polariton condensates. Preprint at https://arxiv.org/abs/1010.5225 (2010).
Koniakhin, S., Bleu, O., Malpuech, G. & Solnyshkov, D. 2D quantum turbulence in a polariton quantum fluid. Chaos Solitons Fractals 132, 109574 (2020).
Skaugen, A. & Angheluta, L. Vortex clustering and universal scaling laws in two-dimensional quantum turbulence. Phys. Rev. E 93, 032106 (2016).
Garcia-Orozco, A. D., Madeira, L., Galantucci, L., Barenghi, C. F. & Bagnato, V. S. Intra-scales energy transfer during the evolution of turbulence in a trapped Bose-Einstein condensate. Europhys. Lett. 130, 46001 (2020).
Steger, M. et al. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B 88, 235314 (2013).
Alyatkin, S., Sigurdsson, H., Askitopoulos, A., Töpfer, J. D. & Lagoudakis, P. G. Quantum fluids of light in all-optical scatterer lattices. Nat. Commun. 12, 5571 (2021).
Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010).
Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113, 14926–14931 (2016).
Valani, R. N., Groszek, A. J. & Simula, T. P. Einstein-Bose condensation of Onsager vortices. New J. Phys. 20, 053038 (2018).
Kolmakov, G. V., McClintock, P. V. E. & Nazarenko, S. V. Wave turbulence in quantum fluids. Proc. Natl Acad. Sci. USA 111, 4727–4734 (2014).
Kanai, T. & Guo, W. True mechanism of spontaneous order from turbulence in two-dimensional superfluid manifolds. Phys. Rev. Lett. 127, 095301 (2021).
Bradley, A. S., Kumar, R. K., Pal, S. & Yu, X. Spectral analysis for compressible quantum fluids. Phys. Rev. A 106, 043322 (2022).
Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301 (1941).
Comaron, P., Carusotto, I., Szymańska, M. H. & Proukakis, N. P. Non-equilibrium Berezinskii-Kosterlitz-Thouless transition in driven-dissipative condensates. Europhys. Lett. 133, 17002 (2021).
Lagoudakis, K. et al. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106, 115301 (2011).
Caputo, D. et al. Josephson vortices induced by phase twisting a polariton superfluid. Nat. Photon. 13, 488–493 (2019).
Michel, C., Boughdad, O., Albert, M., Larré, P.-E. & Bellec, M. Superfluid motion and drag-force cancellation in a fluid of light. Nat. Commun. 9, 2108 (2018).
Situ, G. & Fleischer, J. W. Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid. Nat. Photon. 14, 517–522 (2020).
Piekarski, C. et al. Measurement of the static structure factor in a paraxial fluid of light using Bragg-like spectroscopy. Phys. Rev. Lett. 127, 023401 (2021).
Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).
Shelykh, I., Malpuech, G., Kavokin, K. V., Kavokin, A. V. & Bigenwald, P. Spin dynamics of interacting exciton polaritons in microcavities. Phys. Rev. B 70, 115301 (2004).
Acknowledgements
R.P., A.S.L., D.T., G.G., M.D.G., V.A., D.S. and D.B. acknowledge the following projects: Italian Ministry of University (MUR) PRIN project ‘Interacting Photons in Polariton Circuits’ – INPhoPOL (grant no. 2017P9FJBS); the project ‘Hardware implementation of a polariton neural network for neuromorphic computing’ – Joint Bilateral Agreement CNR-RFBR (Russian Foundation for Basic Research) – Triennal Program 2021–2023; the MAECI project ‘Novel photonic platform for neuromorphic computing’, Joint Bilateral Project Italia-Polonia 2022–2023; PNRR MUR project ‘National Quantum Science and Technology Institute’ – NQSTI (PE0000023); PNRR MUR project ‘Integrated Infrastructure Initiative in Photonic and Quantum Sciences’ – I-PHOQS (IR0000016); Apulia Region, project ‘Progetto Tecnopolo per la Medicina di precisione’, Tecnomed 2 (grant no. Deliberazione della Giunta Regionale n. 2117 del 21/11/2018). M.M. and P.C. acknowledge funding from National Science Centre, Poland, grant no. 2016/22/E/ST3/00045. We are grateful to P. Cazzato for valuable technical support during the experiments. D.B. is grateful to B. Alegria for logistics and inspiration.
Author information
Authors and Affiliations
Contributions
R.P., P.C., M.M., D.B. and D.S. contributed to the formulation of the project. M.M., D.B. and D.S. supervised the project. R.P. and P.C. contributed to the data curation and, together with A.S.L. and D.B., to the formal analysis and development of the methodology. R.P., P.C. and D.T. cured the codes. Funding acquisition was managed by M.M., D.S. and G.G. All authors contributed to discussions and reviewing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–9 and Figs. 1–8.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Panico, R., Comaron, P., Matuszewski, M. et al. Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids. Nat. Photon. 17, 451–456 (2023). https://doi.org/10.1038/s41566-023-01174-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-023-01174-4