Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-rate quantum key distribution exceeding 110 Mb s–1


Quantum key distribution (QKD) can provide fundamentally proven secure communication. Towards application, the secret key rate (SKR) is a key figure of merit for any QKD system. The SKR has so far been limited to about a few megabits per second. Here we report a QKD system that is able to generate keys at a record high SKR of 115.8 Mb s–1 over a 10 km standard optical fibre, and distribute keys over up to 328 km of ultralow-loss fibre. Such abilities are attributed to a multipixel superconducting nanowire single-photon detector with an ultrahigh counting rate, an integrated transmitter that can stably encode polarization states with low error, a fast post-processing algorithm for generating keys in real time and the high system clock rate operation. The results demonstrate the feasibility of practical high-rate QKD with photonic techniques, thus opening its possibility for widespread applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Eight-pixel SNSPD characterization.
Fig. 3: SKRs at different fibre distances.
Fig. 4: System stability and post-processing capability.

Data availability

All of the data that support the findings of this study are reported in the main text and Supplementary Information. Source data are available from the corresponding authors on reasonable request.


  1. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. IEEE International Conference on Computers, Systems and Signal Processing 175–179 (IEEE, 1984).

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article  ADS  Google Scholar 

  5. Diamanti, E., Lo, H.-K., Qi, B. & Yuan, Z. Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016).

  6. Sasaki, M. Quantum networks: where should we be heading? Quantum Sci. Technol. 2, 020501 (2017).

    Article  ADS  Google Scholar 

  7. Takesue, H. et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007).

    Article  ADS  Google Scholar 

  8. Lucamarini, M. et al. Efficient decoy-state quantum key distribution with quantified security. Opt. Express 21, 24550–24565 (2013).

    Article  ADS  Google Scholar 

  9. Yuan, Z. et al. 10-Mb/s quantum key distribution. J. Light. Technol. 36, 3427–3433 (2018).

    Article  ADS  Google Scholar 

  10. Islam, N. T., Lim, C. C. W., Cahall, C., Kim, J. & Gauthier, D. J. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017).

    Article  ADS  Google Scholar 

  11. Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    Article  ADS  Google Scholar 

  12. Grünenfelder, F., Boaron, A., Rusca, D., Martin, A. & Zbinden, H. Performance and security of 5 GHz repetition rate polarization-based quantum key distribution. Appl. Phys. Lett. 117, 144003 (2020).

    Article  ADS  Google Scholar 

  13. Agnesi, C. et al. Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder. Optica 7, 284–290 (2020).

    Article  ADS  Google Scholar 

  14. Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  ADS  Google Scholar 

  15. Tomamichel, M., Lim, C. C. W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012).

    Article  ADS  Google Scholar 

  16. Lim, C. C. W., Curty, M., Walenta, N., Xu, F. & Zbinden, H. Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014).

    Article  ADS  Google Scholar 

  17. Rusca, D., Boaron, A., Grünenfelder, F., Martin, A. & Zbinden, H. Finite-key analysis for the 1-decoy state QKD protocol. Appl. Phys. Lett. 112, 171104 (2018).

    Article  ADS  Google Scholar 

  18. Tanaka, A. et al. High-speed quantum key distribution system for 1-Mbps real-time key generation. IEEE J. Quantum Electron. 48, 542–550 (2012).

    Article  ADS  Google Scholar 

  19. Fröhlich, B. et al. Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163–167 (2017).

    Article  ADS  Google Scholar 

  20. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  21. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  22. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  ADS  Google Scholar 

  23. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    Article  ADS  Google Scholar 

  24. You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673–2692 (2020).

    Article  Google Scholar 

  25. Korzh, B. et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9, 163–168 (2015).

    Article  ADS  Google Scholar 

  26. Comandar, L. C. et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photon. 10, 312–315 (2016).

    Article  ADS  Google Scholar 

  27. Zhang, W. et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz. IEEE Trans. Appl. Supercond. 29, 2200204 (2019).

    Article  Google Scholar 

  28. Mao, H.-K., Li, Q., Hao, P.-L., Abd-El-Atty, B. & Iliyasu, A. M. High performance reconciliation for practical quantum key distribution systems. Opt. Quantum Electron. 54, 163 (2022).

    Article  Google Scholar 

  29. Yan, B., Li, Q., Mao, H. & Chen, N. An efficient hybrid hash based privacy amplification algorithm for quantum key distribution. Quantum Inf. Process. 21, 130 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yuan, Z. et al. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 104, 261112 (2014).

    Article  ADS  Google Scholar 

  31. Ma, C. et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016).

    Article  ADS  Google Scholar 

  32. Sibson, P. et al. Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017).

    Article  ADS  Google Scholar 

  33. Wei, K. et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030 (2020).

    Google Scholar 

  34. Avesani, M. et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. NPJ Quantum Inf. 7, 93 (2021).

  35. Xavier, G., de Faria, G. V., Temporão, G. & Von der Weid, J. Full polarization control for fiber optical quantum communication systems using polarization encoding. Opt. Express 16, 1867–1873 (2008).

  36. Vorontsov, M. A., Carhart, G. W. & Ricklin, J. C. Adaptive phase-distortion correction based on parallel gradient-descent optimization. Opt. Lett. 22, 907–909 (1997).

    Article  ADS  Google Scholar 

  37. Dauler, E. A. et al. Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Mod. Opt. 56, 364–373 (2009).

    Article  ADS  Google Scholar 

  38. Scarani, V. & Renner, R. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008).

  39. Lee, C. et al. Large-alphabet encoding for higher-rate quantum key distribution. Opt. Express 27, 17539–17549 (2019).

    Article  ADS  Google Scholar 

  40. Wang, H. et al. High-speed gaussian-modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone-assisted phase compensation. Opt. Express 28, 32882–32893 (2020).

    Article  ADS  Google Scholar 

  41. Qi, B., Lougovski, P., Pooser, R., Grice, W. & Bobrek, M. Generating the local oscillator ‘locally’ in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5, 041009 (2015).

    Google Scholar 

  42. Cañas, G. et al. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 96, 022317 (2017).

    Article  ADS  Google Scholar 

  43. Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).

    Article  ADS  Google Scholar 

  44. Bacco, D. et al. Boosting the secret key rate in a shared quantum and classical fibre communication system. Commun. Phys. 2, 140 (2019).

    Article  Google Scholar 

  45. Wang, H. et al. Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area. Commun. Phys. 5, 162 (2022).

  46. Roumestan, F. et al. High-rate continuous variable quantum key distribution based on probabilistically shaped 64 and 256-QAM. In 2021 European Conference on Optical Communication (ECOC) 1–4 (IEEE, 2021).

  47. Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

    Article  ADS  Google Scholar 

  48. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

Download references


We would like to thank B. Bai, Y. Hong, X. Jiang, Z. Yuan, W.-J. Zhang and J. Zhang for helpful discussions and assistance. This work was supported by National Natural Science Foundation of China (grant no. 62031024, 62071151), Innovation Program for Quantum Science and Technology (grant no. 2021ZD0300300), Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01), Shanghai Science and Technology Development Funds (grant no. 22JC1402900), Shanghai Academic/Technology Research Leader (grant no. 21XD1403800), Key-Area Research and Development Program of Guangdong Province (grant no. 2020B0303020001), Anhui Initiative in Quantum Information Technologies and Chinese Academy of Sciences. W.L. acknowledges support from the Natural Science Foundation of Shanghai (grant no. 22ZR1468100). F.X. acknowledges the support from the Tencent Foundation.

Author information

Authors and Affiliations



F.X. and J.-W.P. conceived the research and designed the experiments. W.L., L.Z. and F.X. performed the experiments. W.L., L.Z., H.T., Y.L. and F.X. analysed the data. W.L., S.-K.L., C.-Z.P. and F.X. developed the photonic chip. H.-K.M., B.Y. and Q.L. implemented the post-processing algorithms. J.H., H.L., Z.W. and L.Y. developed the SNSPDs, with input from Y.L. and Q.Z. W.L., F.X. and J.-W.P. wrote the manuscript, with input from all authors. All authors contributed materials and analysis tools.

Corresponding authors

Correspondence to Feihu Xu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, L., Tan, H. et al. High-rate quantum key distribution exceeding 110 Mb s–1. Nat. Photon. (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing