Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals

Abstract

Near-infrared-to-visible photon upconversion holds great promise for a diverse range of applications. Current photosensitizers for triplet-fusion upconversion across this spectral window often contain either precious or toxic elements and have relatively low efficiencies. Although colloidal nanocrystals have emerged as versatile photosensitizers, the only family of nanocrystals discovered for near-infrared upconversion is the highly toxic lead chalcogenides. Here we report zinc-doped CuInSe2 nanocrystals as a low-cost and lead-free alternate, enabling near-infrared-to-yellow upconversion with an external quantum efficiency reaching 16.7%. When directly merged with photoredox catalysis, this system enables efficient near-infrared-driven organic synthesis and polymerization, which in turn solves the issue of reabsorption loss for nanocrystal-sensitized upconversion. Moreover, the broadband light capture of these nanocrystals enables very rapid reactions under indoor sunlight. Extending the reach of ‘solar synthesis’ into the near-infrared may realize the century-long dream of conducting high-added-value chemical transformations using sunlight.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excited-state dynamics and energy transfer of the ZCISe NCs.
Fig. 2: NIR-to-visible TTA-UC.
Fig. 3: NIR and solar-driven photoredox using TTA-UC.
Fig. 4: NIR and solar-driven photopolymerization using TTA-UC.

Data availability

All data are available in the Article or the Supplementary Information and can be obtained upon request from the corresponding author. These data are also available via Figshare at https://figshare.com/articles/figure/Data_for_CISe_TTA-UC_and_photoredox/21701204. Source data are provided with this paper.

References

  1. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    Article  ADS  Google Scholar 

  2. Wen, S. et al. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 13, 828–838 (2019).

    Article  ADS  Google Scholar 

  3. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Article  Google Scholar 

  4. Schulze, T. F. & Schmidt, T. W. Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103–125 (2015).

    Article  Google Scholar 

  5. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  Google Scholar 

  6. Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

    Article  ADS  Google Scholar 

  7. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    Article  ADS  Google Scholar 

  8. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  Google Scholar 

  9. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  Google Scholar 

  10. Bharmoria, P., Bildirir, H. & Moth-Poulsen, K. Triplet–triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 49, 6529–6554 (2020).

    Article  Google Scholar 

  11. Han, S. et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature 587, 594–599 (2020).

    Article  ADS  Google Scholar 

  12. Yanai, N. & Kimizuka, N. New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50, 2487–2495 (2017).

    Article  Google Scholar 

  13. Wu, W., Guo, H., Wu, W., Ji, S. & Zhao, J. Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet–triplet annihilation based upconversion. J. Org. Chem. 76, 7056–7064 (2011).

    Article  Google Scholar 

  14. Singh-Rachford, T. N. & Castellano, F. N. Low power visible-to-UV upconversion. J. Phys. Chem. A 113, 5912–5917 (2009).

    Article  Google Scholar 

  15. Wu, T. C., Congreve, D. N. & Baldo, M. A. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer. Appl. Phys. Lett. 107, 031103 (2015).

    Article  ADS  Google Scholar 

  16. Islangulov, R. R., Kozlov, D. V. & Castellano, F. N. Low power upconversion using MLCT sensitizers. Chem. Commun., 3776–3778 (2005).

  17. Amemori, S., Sasaki, Y., Yanai, N. & Kimizuka, N. Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0–T1 absorption. J. Am. Chem. Soc. 138, 8702–8705 (2016).

    Article  Google Scholar 

  18. Huang, L. et al. Highly effective near-infrared activating triplet–triplet annihilation upconversion for photoredox catalysis. J. Am. Chem. Soc. 142, 18460–18470 (2020).

    Article  Google Scholar 

  19. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10, 31–34 (2016).

    Article  ADS  Google Scholar 

  20. Huang, Z. et al. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

    Article  ADS  Google Scholar 

  21. Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M. & Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016).

    Article  ADS  Google Scholar 

  22. Mase, K., Okumura, K., Yanai, N. & Kimizuka, N. Triplet sensitization by perovskite nanocrystals for photon upconversion. Chem. Commun. 53, 8261–8264 (2017).

    Article  Google Scholar 

  23. Han, Y., He, S. & Wu, K. Molecular triplet sensitization and photon upconversion using colloidal semiconductor nanocrystals. ACS Energy Lett. 6, 3151–3166 (2021).

    Article  ADS  Google Scholar 

  24. Nienhaus, L. et al. Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion. ACS Energy Lett. 4, 888–895 (2019).

    Article  Google Scholar 

  25. Izawa, S. & Hiramoto, M. Efficient solid-state photon upconversion enabled by triplet formation at an organic semiconductor interface. Nat. Photonics 15, 895–900 (2021).

    Article  ADS  Google Scholar 

  26. Fückel, B. et al. Singlet oxygen mediated photochemical upconversion of NIR light. J. Phys. Chem. Lett. 2, 966–971 (2011).

    Article  Google Scholar 

  27. Mahboub, M., Huang, Z. & Tang, M. L. Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169–7175 (2016).

    Article  ADS  Google Scholar 

  28. Gholizadeh, E. M. et al. Photochemical upconversion of near-infrared light from below the silicon bandgap. Nat. Photonics 14, 585–590 (2020).

    Article  ADS  Google Scholar 

  29. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2009).

    Article  Google Scholar 

  30. Sandroni, M., Wegner, K. D., Aldakov, D. & Reiss, P. Prospects of chalcopyrite-type nanocrystals for energy applications. ACS Energy Lett. 2, 1076–1088 (2017).

    Article  Google Scholar 

  31. Yarema, O. et al. Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 25, 3753–3757 (2013).

    Article  Google Scholar 

  32. Du, J., Singh, R., Fedin, I., Fuhr, A. S. & Klimov, V. I. Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells. Nat. Energy 5, 409–417 (2020).

    Article  ADS  Google Scholar 

  33. Du, J. et al. Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016).

    Article  Google Scholar 

  34. Wu, K., Li, H. & Klimov, V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 12, 105–110 (2018).

    Article  ADS  Google Scholar 

  35. Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 10, 878–885 (2015).

    Article  ADS  Google Scholar 

  36. Fuhr, A., Yun, H. J., Crooker, S. A. & Klimov, V. I. Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots. ACS Nano 14, 2212–2223 (2020).

    Article  Google Scholar 

  37. Han, Y. et al. Triplet sensitization by “self-trapped” excitons of nontoxic CuInS2 nanocrystals for efficient photon upconversion. J. Am. Chem. Soc. 141, 13033–13037 (2019).

    Article  Google Scholar 

  38. Berends, A. C. et al. Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals. J. Phys. Chem. Lett. 7, 3503–3509 (2016).

    Article  Google Scholar 

  39. Knowles, K. E. et al. Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and applications. Chem. Rev. 116, 10820–10851 (2016).

    Article  Google Scholar 

  40. Huang, Z. et al. PbS/CdS core–shell quantum dots suppress charge transfer and enhance triplet transfer. Angew. Chem. Int. Ed. 56, 16583–16587 (2017).

    Article  Google Scholar 

  41. Thompson, N. J. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014).

    Article  ADS  Google Scholar 

  42. Luo, X. et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat. Commun. 11, 28 (2020).

    Article  ADS  Google Scholar 

  43. Luo, X. et al. Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 141, 4186–4190 (2019).

    Article  Google Scholar 

  44. Monguzzi, A., Mezyk, J., Scotognella, F., Tubino, R. & Meinardi, F. Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78, 195112 (2008).

    Article  ADS  Google Scholar 

  45. Haefele, A., Blumhoff, J., Khnayzer, R. S. & Castellano, F. N. Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3, 299–303 (2012).

    Article  Google Scholar 

  46. Zhou, Y., Castellano, F. N., Schmidt, T. W. & Hanson, K. On the quantum yield of photon upconversion via triplet–triplet annihilation. ACS Energy Lett. 5, 2322–2326 (2020).

    Article  Google Scholar 

  47. Huang, Z. et al. Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers. J. Am. Chem. Soc. 141, 9769–9772 (2019).

    Article  Google Scholar 

  48. Sasaki, Y. et al. Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew. Chem. Int. Ed. 58, 17827–17833 (2019).

    Article  Google Scholar 

  49. Neumann, M., Füldner, S., König, B. & Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed. 50, 951–954 (2011).

    Article  Google Scholar 

  50. Mashraqui, S. H. & Kellogg, R. M. 3-Methyl-2,3-dihydrobenzothiazoles as reducing agent. Dye enhanced photoreactions. Tetrahedron Lett. 26, 1453–1456 (1985).

    Article  Google Scholar 

  51. Anger, F. et al. Enhanced stability of rubrene against oxidation by partial and complete fluorination. J. Phys. Chem. C 120, 5515–5522 (2016).

    Article  Google Scholar 

  52. Theriot Jordan, C. et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352, 1082–1086 (2016).

    Article  ADS  Google Scholar 

  53. Xiao, P., Zhang, J., Graff, B., Fouassier, J. P. & Lalevée, J. Rubrene-based green-light-sensitive photoinitiating systems of polymerization. Macromol. Chem. Phys. 218, 1700314 (2017).

    Article  Google Scholar 

  54. Jiang, Y., Wang, C., Rogers, C. R., Kodaimati, M. S. & Weiss, E. A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nat. Chem. 11, 1034–1040 (2019).

    Article  Google Scholar 

  55. Zhu, X., Lin, Y., Sun, Y., Beard, M. C. & Yan, Y. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 141, 733–738 (2019).

    Article  Google Scholar 

  56. Huang, Y., Zhu, Y. & Egap, E. Semiconductor quantum dots as photocatalysts for controlled light-mediated radical polymerization. ACS Macro Lett. 7, 184–189 (2018).

    Article  Google Scholar 

  57. Huang, C. et al. Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. Chem 7, 1244–1257 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007), the National Natural Science Foundation of China (22173098, 21975253 and 22209180), the Ministry of Science and Technology of China (2018YFA0208703), the Dalian Institute of Chemical Physics (DICP I 202106) and the Fundamental Research Funds for the Central Universities (20720220009).

Author information

Authors and Affiliations

Authors

Contributions

K.W. conceived the ideas and designed the project. W.L. and J.D. synthesized the samples and characterized them. C.N. and W.L. carried out the photoredox reactions. W.L. and G.L. carried out the spectroscopic measurements. Y.H. and G.Z. participated in discussions. F.Y. carried out the GC-MS and LC-MS measurements. K.W. wrote the manuscript with contributions from all authors. W.L., C.N. and J.D. contributed equally.

Corresponding author

Correspondence to Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Mohammad Khaja Nazeeruddin, Yasuhiro Tachibana and Michael Walter for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–4, Table 1, Figs. 1–17 and refs. 1–26.

Supplementary Data 1

Raw data for the TTA-UC parameters listed in Table 1.

Source data

Source Data Fig. 1

Fig. 1 source data in spreadsheet.

Source Data Fig. 2

Fig. 2 source data in spreadsheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Nie, C., Du, J. et al. Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals. Nat. Photon. (2023). https://doi.org/10.1038/s41566-023-01156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-023-01156-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing