Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance

Abstract

Prolonging the carrier lifetime in lead-halide perovskite (LHP) can enable novel schemes for highly efficient energy-harvesting and photodetection applications. However, suppressing the recombination processes in LHP without chemical treatments remains an open challenge. Here we show that the recombination rate of three-dimensional LHP polycrystalline thin films can decrease significantly when placed on hyperbolic metamaterials. Through momentum-resolved imaging, we reveal that these LHP films possess a dominant in-plane transition dipole, which in turn is responsible for the decrease in the recombination rate. We observe a decrease in the recombination rate of a MAPbI3 LHP thin film by ~50% and 30% when placed on a plasmonic mirror and a hyperbolic metamaterial, respectively. Furthermore, we discover a tenfold decrease in the recombination rate of (Cs0.06FA0.79MA0.15)Pb(I0.85Br0.15)3, and the origin of this giant reduction in the recombination process is discussed based on exciton-trapping dynamics. By controlling the recombination rate of LHPs, we demonstrate a 250% increase in photoresponsivity of LHP-based photodetectors. The resulting physical insights will provide novel means to enhance the efficiency of LHP-based optoelectronic and photonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Purcell effect of an anisotropic transition dipole in the presence of a plasmonic substrate.
Fig. 2: Momentum-resolved radiation and TRPL measurements of MAPbI3 and LDS750 films.
Fig. 3: TRPL results of MAPbBr3 and DCM films.
Fig. 4: TRPL results for the TCLHP ((Cs0.06FA0.79MA0.15) Pb(I0.85Br0.15)3) film and a schematic illustration of the relevant recombination processes.
Fig. 5: Enhancement of recombination time.
Fig. 6: Enhanced photoresponsivity of LHPs with suppressed recombination rate.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    Article  ADS  Google Scholar 

  2. Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

    Article  ADS  Google Scholar 

  3. Lu, D., Kan, J. J., Fullerton, E. E. & Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9, 48–53 (2014).

    Article  ADS  Google Scholar 

  4. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 958–967 (2013).

    Article  ADS  Google Scholar 

  5. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Purcell, E. M. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article  Google Scholar 

  7. Drexage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1–2, 693–701 (1970).

    Article  Google Scholar 

  8. Peter, Lodahl et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  ADS  Google Scholar 

  9. Elkabbash, M. et al. Cooperative energy transfer controls the spontaneous emission rate beyond field enhancement limits. Phys. Rev. Lett. 122, 203901 (2019).

    Article  ADS  Google Scholar 

  10. Russell, K. J., Liu, T. L., Cui, S. & Hu, E. L. Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photon. 6, 459–462 (2012).

    Article  ADS  Google Scholar 

  11. Yablonovitch, E. & Gmitter, T. J. Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63, 1950–1953 (1989).

    Article  ADS  Google Scholar 

  12. Rogers, T. J., Deppe, D. G. & Streetman, B. G. Effect of an AlAs/GaAs mirror on the spontaneous emission of an InGaAs-GaAs quantum well. Appl. Phys. Lett. 57, 1858–1860 (1990).

    Article  ADS  Google Scholar 

  13. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    Article  ADS  Google Scholar 

  14. Barnes, W. L. Fluorescence near interfaces. J. Mod. Opt. 45, 661–699 (1998).

    Article  ADS  Google Scholar 

  15. Brotons-Gisbert, M. et al. Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nat. Commun. 10, 3913 (2019).

    Article  ADS  Google Scholar 

  16. Scott, R. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 12, 1155–1160 (2017).

    Article  ADS  Google Scholar 

  17. Wang, G. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 119, 047401 (2017).

    Article  ADS  Google Scholar 

  18. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

    Article  ADS  Google Scholar 

  19. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  ADS  Google Scholar 

  20. DeCrescent, R. A. et al. Bright magnetic dipole radiation from two-dimensional lead-halide perovskites. Sci. Adv. 6, eaay4900 (2020).

    Article  ADS  Google Scholar 

  21. Chuang, S. Y., Yu, C. C., Chen, H. L., Su, W. F. & Chen, C. W. Exploiting optical anisotropy to increase the external quantum efficiency of flexible P3HT:PCBM blend solar cells at large incident angles. Sol. Energy Mater. Sol. Cells 95, 2141–2150 (2011).

    Article  Google Scholar 

  22. Böhmler, M. et al. Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna. Opt. Express 18, 16443 (2010).

    Article  ADS  Google Scholar 

  23. Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photon. 10, 53–59 (2016).

    Article  ADS  Google Scholar 

  24. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  25. Giovanni, D. et al. Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping. Light Sci. Appl. 10, 1–9 (2021).

    Article  Google Scholar 

  26. Hu, W. et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 8, 106 (2019).

    Article  ADS  Google Scholar 

  27. Leung, S. F. et al. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018).

    Article  Google Scholar 

  28. Saidaminov, M. I. et al. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015).

    Article  ADS  Google Scholar 

  29. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  ADS  Google Scholar 

  30. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    Article  ADS  Google Scholar 

  31. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  32. Huang, J. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  ADS  Google Scholar 

  33. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  34. Kim, Y. H., Cho, H. & Lee, T. W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

    Article  ADS  Google Scholar 

  35. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  Google Scholar 

  36. Chamoli, S. K., ElKabbash, M., Zhang, J. & Guo, C. Dynamic control of spontaneous emission rate using tunable hyperbolic metamaterials. Opt. Lett. 45, 1671–1674 (2020).

    Article  ADS  Google Scholar 

  37. Lee, K. J., Lee, Y. U., Kim, S. J. & André, P. Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces. Adv. Mater. Interfaces 5, 1701629 (2018).

    Article  Google Scholar 

  38. Tumkur, T. et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 99, 2011–2014 (2011).

    Article  Google Scholar 

  39. Chen, X., Lu, H., Yang, Y. & Beard, M. C. Excitonic effects in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 9, 2595–2603 (2018).

    Article  Google Scholar 

  40. Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    Article  ADS  Google Scholar 

  41. Yang, Y. et al. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nat. Commun. 7, 12613 (2016).

    Article  ADS  Google Scholar 

  42. Lee, K. J. et al. Exciton dynamics in two-dimensional MoS2 on hyperbolic metamaterial-based nanophotonic platform. Phys. Rev. B 101, 041405(R) (2020).

    Article  ADS  Google Scholar 

  43. Lee, K. J. et al. Blue-shifting intramolecular charge transfer emission by nonlocal effect of hyperbolic metamaterials. Nano Lett. 18, 1476–1482 (2018).

    Article  ADS  Google Scholar 

  44. Lee, K. J. et al. Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues. Nat. Mater. 16, 722–730 (2017).

    Article  ADS  Google Scholar 

  45. Barrit, D. et al. Impact of the solvation state of lead iodide on its two-step conversion to MAPbI3: an in situ investigation. Adv. Funct. Mater. 29, 1807544 (2019).

    Article  ADS  Google Scholar 

  46. Syed, H. et al. Giant nonlinear optical response in triple cation halide mixed perovskite films. Adv. Opt. Mater. 8, 1901766 (2020).

    Article  Google Scholar 

  47. Berberan-Santos, M. N., Bodunov, E. N. & Valeur, B. Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem. Phys. 315, 171–182 (2005).

    Article  Google Scholar 

  48. Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A. & Snaith, H. J. Electron-hole diffusion lengths exceeding trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  49. Shi, J. et al. Exciton character and high-performance stimulated emission of hybrid lead bromide perovskite polycrystalline film. Adv. Opt. Mater. 8, 1902026 (2020).

    Article  Google Scholar 

  50. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  ADS  Google Scholar 

  51. Goodman, A. J., Willard, A. P. & Tisdale, W. A. Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2. Phys. Rev. B 96, 121404(R) (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bill and Melinda Gates Foundation, the Army Research Office, the National Science Foundation and the National Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.J.L., M.E. and C.G. discussed and defined the project. K.J.L. and M.E. initiated the project and designed and coordinated the experiments. Y.W. characterized the optical properties of the samples. R.W. prepared the nanophotonic substrates and performed numerical calculations of absorption. K.J.L. and Y.W. performed TRPL measurements. K.J.L. and J.Z. carried out the radiation pattern measurements. S.K.C. and M.E. performed the Purcell factor calculations. W.K., T.H. and W.Y. carried out the photodetector experiment. K.J.L., M.E. and C.G. analysed the data. K.J.L., M.E. and C.G. wrote the manuscript. C.G. supervised the overall project. All authors commented on the paper.

Corresponding authors

Correspondence to Kwang Jin Lee, Mohamed ElKabbash or Chunlei Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Takashi Asano, Matthew Pelton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, notes I–VII and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.J., Wei, R., Wang, Y. et al. Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nat. Photon. 17, 236–243 (2023). https://doi.org/10.1038/s41566-022-01151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01151-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing