Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An efficient solid-solution crystalline organic light-emitting diode with deep-blue emission

Subjects

Abstract

Crystalline organic semiconductors are potentially attractive media for advanced organic solid-state light-emitting devices due to their advantageous highly oriented transition dipole moments and high mobility of charge carriers, which should in principle lead to efficient light emission; however, crystalline organic semiconductor-based organic light-emitting diodes (C-OLEDs) have until now struggled with poor device performance. Here we report a method to create high-performance C-OLEDs by using organic solid-solution thin films of deep-blue fluorescent materials. Our C-OLED exhibits a strong photon output capacity and has an external quantum efficiency of up to 6.5% with Commission Internationale de L’Eclairage (CIE) colour coordinates of around (0.15, 0.07). The driving voltage (4.0 V@1,000 cd m2), power efficiency (3.9 lm W–1@1,000 cd m2) and series-resistance joule-heat loss ratio (11.1%@1,000 cd m2) outperform deep-blue amorphous OLEDs (CIEy ≤ 0.08), making it an attractive approach for next-generation OLED technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device structure and performances of solid-solution C-OLED.
Fig. 2: Fabrication and characterization of crystalline OSS thin films.
Fig. 3: Photophysical characteristics and carrier mobility.
Fig. 4: Comparisons of solid-solution C-OLED with amorphous OLEDs.

Similar content being viewed by others

Data availability

All of the data are available in the main text or Supplementary Information. Source Data are provided with this paper.

References

  1. Pope, M., Magnante, P. & Kallmann, H. P. Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042–2043 (1963).

    Article  ADS  Google Scholar 

  2. O’Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  Google Scholar 

  3. Wang, C. L., Dong, H. L., Jiang, L. & Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev. 47, 422–500 (2018).

    Article  Google Scholar 

  4. Gierschner, J. et al. Luminescence in crystalline organic materials: from molecules to molecular solids. Adv. Opt. Mater. 9, 2002251 (2021).

    Article  Google Scholar 

  5. Ding, R., An, M. H., Feng, J. & Sun, H. B. Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments. Laser Photon. Rev. 13, 1900009 (2019).

    Article  ADS  Google Scholar 

  6. Liu, C. F., Liu, X., Lai, W. Y. & Huang, W. Organic light-emitting field-effect transistors: device geometries and fabrication techniques. Adv. Mater. 30, 1802466 (2018).

    Article  Google Scholar 

  7. Qin, Z. S., Gao, H. K., Dong, H. L. & Hu, W. P. Organic light-emitting transistors entering a new development stage. Adv. Mater. 33, 2007149 (2021).

    Article  Google Scholar 

  8. Wan, Y. et al. Efficient organic light-emitting transistors based on high-quality ambipolar single crystals. ACS Appl. Mater. Interfaces 12, 43976–43983 (2020).

    Article  Google Scholar 

  9. Kuehne, A. J. C. & Gather, M. C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 12823–12864 (2016).

    Article  Google Scholar 

  10. Jiang, Y. et al. Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev. 49, 5885–5944 (2020).

    Article  Google Scholar 

  11. Liang, J., Yan, Y. & Zhao, Y. S. Organic microlaser arrays: from materials engineering to optoelectronic applications. Acc. Mater. Res. 2, 340–351 (2021).

    Article  Google Scholar 

  12. Zhang, X. T., Dong, H. L. & Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 30, 1801048 (2018).

    Article  Google Scholar 

  13. Shi, Y. L., Zhuo, M. P., Wang, X. D. & Liao, L. S. Two-dimensional organic semiconductor crystals for photonics applications. ACS Appl. Nano Mater. 3, 1080–1097 (2020).

    Article  Google Scholar 

  14. Kim, K. H. & Kim, J. J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 30, 1705600 (2018).

    Article  ADS  Google Scholar 

  15. Watanabe, Y., Sasabe, H. & Kido, J. Review of molecular engineering for horizontal molecular orientation in organic light-emitting devices. Bull. Chem. Soc. Jpn. 92, 716–728 (2019).

    Article  Google Scholar 

  16. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  Google Scholar 

  17. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals (Oxford Univ. Press, 1982).

  18. Cai, X. Y. & Su, S. J. Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic light-emitting diodes. Adv. Funct. Mater. 28, 1802558 (2018).

    Article  Google Scholar 

  19. Schmidt, T. D. et al. Emitter orientation as a key parameter in organic light-emitting diodes. Phys. Rev. Appl. 8, 037001 (2017).

    Article  ADS  Google Scholar 

  20. Nakanotani, H. & Adachi, C. Organic light-emitting diodes containing multilayers of organic single crystals. Appl. Phys. Lett. 96, 053301 (2010).

    Article  ADS  Google Scholar 

  21. Ding, R. et al. Fabrication and characterization of organic single crystal-based light-emitting devices with improved contact between the metallic electrodes and crystal. Adv. Funct. Mater. 24, 7085–7092 (2014).

    Article  Google Scholar 

  22. Liu, J. et al. High mobility emissive organic semiconductor. Nat. Commun. 6, 10032 (2015).

    Article  ADS  Google Scholar 

  23. Yang, X. X. et al. Highly efficient crystalline organic light-emitting diodes. J. Mater. Chem. C 6, 8879–8884 (2018).

    Article  Google Scholar 

  24. An, M. H. et al. Well-balanced ambipolar organic single crystals toward highly efficient light-emitting devices. Adv. Funct. Mater. 30, 2002422 (2020).

    Article  Google Scholar 

  25. Liu, L. et al. Highly oriented crystalline thin film with high electroluminescence performance fabricated by weak epitaxy growth. Org. Electron. 84, 105806 (2020).

    Article  Google Scholar 

  26. Xin, J. H., Sun, P. F., Zhu, F., Wang, Y. & Yan, D. H. Doped crystalline thin-film deep-blue organic light-emitting diodes. J. Mater. Chem. C 9, 2236–2242 (2021).

    Article  Google Scholar 

  27. Tang, C. W., Vanslyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin-films. J. Appl. Phys. 65, 3610–3616 (1989).

    Article  ADS  Google Scholar 

  28. Kido, J., Kimura, M. & Nagai, K. Multilayer white light-emitting organic electroluminescent device. Science 267, 1332–1334 (1995).

    Article  ADS  Google Scholar 

  29. Lee, M. T., Liao, C. H., Tsai, C. H. & Chen, C. H. Highly efficient, deep-blue doped organic light-emitting devices. Adv. Mater. 17, 2493–2497 (2005).

    Article  Google Scholar 

  30. Reineke, S., Thomschke, M., Lussem, B. & Leo, K. White organic light-emitting diodes: status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013).

    Article  ADS  Google Scholar 

  31. Hong, G. et al. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021).

    Article  Google Scholar 

  32. Kitaigorodsky, A. I. Mixed crystals (Springer, 1984).

  33. Takeuchi, M., Ueno, S. & Sato, K. Synchrotron radiation SAXS/WAXS study of polymorph-dependent phase behavior of binary mixtures of saturated monoacid triacylglycerols. Cryst. Growth Des. 3, 369–374 (2003).

    Article  Google Scholar 

  34. Shao, Y. & Yang, Y. Organic solid solutions: Formation and applications in organic light-emitting diodes. Adv. Funct. Mater. 15, 1781–1786 (2005).

    Article  Google Scholar 

  35. Zhen, Y. G. et al. Organic solid solution composed of two structurally similar porphyrins for organic solar cells. J. Am. Chem. Soc. 137, 2247–2252 (2015).

    Article  Google Scholar 

  36. Schwarze, M. et al. Band structure engineering in organic semiconductors. Science 352, 1446–1449 (2016).

    Article  ADS  Google Scholar 

  37. Thomas, S. P. et al. Bandgap tuning in molecular alloy crystals formed by weak chalcogen interactions. J. Phys. Chem. Lett. 12, 3059–3065 (2021).

    Article  Google Scholar 

  38. Lusi, M. A rough guide to molecular solid solutions: design, synthesis and characterization of mixed crystals. CrystEngComm 20, 7042–7052 (2018).

    Article  Google Scholar 

  39. Wang, H. B., Zhu, F., Yang, J. L., Geng, Y. H. & Yan, D. H. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Adv. Mater. 19, 2168–2171 (2007).

    Article  Google Scholar 

  40. Yang, J. L. & Yan, D. H. Weak epitaxy growth of organic semiconductor thin films. Chem. Soc. Rev. 38, 2634–2645 (2009).

    Article  Google Scholar 

  41. Xin, J. H. et al. High-efficiency non-doped deep-blue fluorescent organic light-emitting diodes based on carbazole/phenanthroimidazole derivatives. J. Mater. Chem. C 8, 10185–10190 (2020).

    Article  Google Scholar 

  42. Liu, D., Zhu, F. & Yan, D. Crystalline organic thin films for crystalline OLEDs (I): orientation of phenanthroimidazole derivatives. J. Mater. Chem. C 10, 2663–2670 (2022).

    Article  Google Scholar 

  43. Kuo, C. J. et al. Bis(phenanthroimidazolyl)biphenyl derivatives as saturated blue emitters for electroluminescent devices. J. Mater. Chem. 19, 1865–1871 (2009).

    Article  ADS  Google Scholar 

  44. Wang, Z. et al. Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials. J. Mater. Chem. 21, 5451–5456 (2011).

    Article  Google Scholar 

  45. Hong, K. & Lee, J. L. Recent developments in light extraction technologies of organic light emitting diodes. Electron. Mater. Lett. 7, 77–91 (2011).

    Article  ADS  Google Scholar 

  46. Frischeisen, J., Yokoyama, D., Adachi, C. & Bruetting, W. Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl. Phys. Lett. 96, 073302 (2010).

    Article  ADS  Google Scholar 

  47. Xiang, Y. P. et al. Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Sci. Adv. 6, eaba7855 (2020).

    Article  ADS  Google Scholar 

  48. Komino, T., Tanaka, H. & Adachi, C. Selectively controlled orientational order in linear-shaped thermally activated delayed fluorescent dopants. Chem. Mater. 26, 3665–3671 (2014).

    Article  Google Scholar 

  49. Ding, R. et al. Clarification of the molecular doping mechanism in organic single-crystalline semiconductors and their application in color-tunable light-emitting devices. Adv. Mater. 30, 1801078 (2018).

    Article  Google Scholar 

  50. Kang, J. et al. Time-resolved electroluminescence study for the effect of charge traps on the luminescence properties of organic light-emitting diodes. Phys. Status Solidi A 217, 2000081 (2020).

    Article  ADS  Google Scholar 

  51. Huh, D. H., Kim, G. W., Kim, G. H., Kulshreshtha, C. & Kwon, J. H. High hole mobility hole transport material for organic light-emitting devices. Synth. Met. 180, 79–84 (2013).

    Article  Google Scholar 

  52. Uratani, H. et al. Detailed analysis of charge transport in amorphous organic thin layer by multiscale simulation without any adjustable parameters. Sci. Rep. 6, 39128 (2016).

    Article  ADS  Google Scholar 

  53. Hu, J. Y. et al. Bisanthracene-based donor-acceptor-type light-emitting dopants: highly efficient deep-blue emission in organic light-emitting devices. Adv. Funct. Mater. 24, 2064–2071 (2014).

    Article  Google Scholar 

  54. Pal, A. K. et al. High-efficiency deep-blue-emitting organic light-emitting diodes based on iridium(III) carbene complexes. Adv. Mater. 30, 1804231 (2018).

    Article  Google Scholar 

  55. Ahn, D. H. et al. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nat. Photon. 13, 540–546 (2019).

    Article  ADS  Google Scholar 

  56. Kim, K. et al. Efficiency enhancement of InGaN/GaN blue light-emitting diodes with top surface deposition of AlN/Al2O3. Nano Energy 43, 259–269 (2018).

    Article  Google Scholar 

  57. Swayamprabha, S. S. et al. Approaches for long lifetime organic light emitting diodes. Adv. Sci. 8, 2002254 (2021).

    Article  Google Scholar 

  58. Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article  Google Scholar 

  59. Ho, Y. H., Lin, T. C., Wu, C. F. & Lee, J. H. High efficiency and long lifetime fluorescent blue organic emitting device. Proc. SPIE 6333, 633303 (2006).

    Article  Google Scholar 

  60. Hotta, S., Kimura, H., Lee, S. A. & Tamaki, T. Synthesis of thiophene/phenylene co-oligomers. II [1]. Block and alternating co-oligomers. J. Heterocycl. Chem. 37, 281–286 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (grant no. 2017YFA0204704 to D.H.Y). We acknowledge Jilin Yuanhe Electronic Material Company for support in preparing materials, Y. Wang for support in calculating TDM, D. Ma and D. Yang for support in measuring angle-dependent photoluminescence.

Author information

Authors and Affiliations

Authors

Contributions

F.Z. and D.H.Y. initiated and designed the research. P.F.S. performed the growth of the crystalline thin films, the fabrication and characterization of the OLEDs. D.L. contributed to the crystal structure characterization of 2FPPICz and OSS crystalline thin films. F.Z. and D.H.Y. supervised the project. All authors discussed the results, prepared and commented on the manuscript.

Corresponding author

Correspondence to Feng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Wenping Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Notes 1 and 2, and Tables 1–5.

Source data

Source Data Fig. 1

Original data of Fig. 1.

Source Data Fig. 2

Original data of Fig. 2.

Source Data Fig. 3

Original data of Fig. 3.

Source Data Fig. 4

Original data of Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Liu, D., Zhu, F. et al. An efficient solid-solution crystalline organic light-emitting diode with deep-blue emission. Nat. Photon. 17, 264–272 (2023). https://doi.org/10.1038/s41566-022-01138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01138-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing