Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation


Terahertz radiation enables the coherent excitation of many fundamental modes, such as molecular rotation, lattice vibration and spin precession. To excite the transient state of matter far out of equilibrium, high-power and tunable narrowband terahertz radiation sources have been in great demand for years. However, the terahertz source available at present cannot meet these tunability and power demands, leaving a large scientific gap that has yet to be fully explored. Here we convert the energy modulation induced by the nonlinear longitudinal space charge force to a density modulation and experimentally demonstrate the generation of electron bunch trains with modulation frequencies that are adjustable between 1 and 10 THz. The electron bunch trains can be directly used to produce tunable high-power narrowband terahertz radiation that fully covers the long-standing ‘terahertz gap’, which will open up many more possibilities in terahertz science.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental demonstration of electron bunch trains.
Fig. 2: Bunching factor measurements.
Fig. 3: Measured longitudinal density distribution and projected density profile of the bunch trains.
Fig. 4: Terahertz measurements and simulations.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Sajadi, M., Wolf, M. & Kampfrath, T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles. Nat. Commun. 8, 14963 (2017).

    Article  ADS  Google Scholar 

  2. Du, S. et al. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nat. Photonics 12, 608–612 (2018).

    Article  ADS  Google Scholar 

  3. Zalden, P. et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nat. Commun. 9, 2142 (2018).

    Article  ADS  Google Scholar 

  4. Choi, W. J. et al. Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat. Photonics 16, 366–373 (2022).

    Article  ADS  Google Scholar 

  5. Kim, H. et al. Direct observation of mode-specific phonon–band gap coupling in methylammonium lead halide perovskites. Nat. Commun. 8, 687 (2017).

    Article  ADS  Google Scholar 

  6. Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).

    Article  Google Scholar 

  7. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  8. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    Article  ADS  Google Scholar 

  9. Hu, B. B. & Nuss, M. C. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995).

    Article  ADS  Google Scholar 

  10. Ronald, U. et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  Google Scholar 

  11. Hauri, C. P., Ruchert, C., Vicario, C. & Ardana, F. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett. 99, 161116 (2011).

    Article  ADS  Google Scholar 

  12. Fülöp, J. A. et al. Generation of sub-mJ terahertz pulses by optical rectification. Opt. Lett. 37, 557–559 (2012).

    Article  ADS  Google Scholar 

  13. Xie, X., Dai, J. & Zhang, X.-C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005 (2006).

    Article  ADS  Google Scholar 

  14. Kim, K. Y., Taylor, A. J., Glownia, J. H. & Rodriguez, G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605–609 (2008).

    Article  Google Scholar 

  15. Kuk, D. et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air. Appl. Phys. Lett. 108, 121106 (2016).

    Article  ADS  Google Scholar 

  16. Jolly, S. W. et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nat. Commun. 10, 2591 (2019).

    Article  ADS  Google Scholar 

  17. Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129–131 (2017).

    Article  ADS  Google Scholar 

  18. Gensch, M. et al. New infrared undulator beamline at FLASH. Infrared Phys. Technol. 51, 423–425 (2008).

    Article  ADS  Google Scholar 

  19. Green, B. et al. High-field high-repetition-rate sources for the coherent THz control of matter. Sci. Rep. 6, 22256 (2016).

    Article  ADS  Google Scholar 

  20. Chiadroni, E. et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 102, 094101 (2013).

    Article  ADS  Google Scholar 

  21. Wu, Z. et al. Intense terahertz pulses from SLAC electron beams using coherent transition radiation. Rev. Sci. Instrum. 84, 022701 (2013).

    Article  ADS  Google Scholar 

  22. Di Mitri, S. et al. Coherent THz emission enhanced by coherent synchrotron radiation wakefield. Sci. Rep. 8, 11661 (2018).

    Article  ADS  Google Scholar 

  23. Ortega, J. M., Glotin, F. & Prazeres, R. Extension in far-infrared of the CLIO free-electron laser. Infrared Phys. Techol. 49, 133–138 (2006).

    Article  ADS  Google Scholar 

  24. Oepts, D., van der Meer, A. F. G. & van Amersfoort, P. W. The free-electron-laser user facility FELIX. Infrared Phys. Technol. 36, 297–308 (1995).

    Article  ADS  Google Scholar 

  25. Winnerl, S. et al. FELBE free-electron laser: status and application for time resolved spectroscopy experiments. In Proc. 2006 Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics 159 (IEEE, 2007);

  26. Perenboom, J. A. A. J. et al. Developments at the High Field Magnet Laboratory in Nijmegen. J. Low Temp. Phys. 170, 520–530 (2013).

    Article  ADS  Google Scholar 

  27. Shen, Y. et al. Tunable few-cycle and multicycle coherent terahertz radiation from relativistic electrons. Phys. Rev. Lett. 107, 204801 (2011).

    Article  ADS  Google Scholar 

  28. Shevelev, M. et al. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer. Phys. Rev. Accel. Beams 20, 103401 (2017).

    Article  ADS  Google Scholar 

  29. Muggli, P. et al. Generation of trains of electron microbunches with adjustable subpicosecond spacing. Phys. Rev. Lett. 101, 054801 (2008).

    Article  ADS  Google Scholar 

  30. Sun, Y. E. et al. Tunable subpicosecond electron bunch train generation using a transverse-to-longitudinal phase space exchange technique. Phys. Rev. Lett. 105, 234801 (2010).

    Article  ADS  Google Scholar 

  31. Dunning, M. et al. Generating periodic terahertz structures in a relativistic electron beam through frequency down-conversion of optical lasers. Phys. Rev. Lett. 109, 074801 (2012).

    Article  ADS  Google Scholar 

  32. Bielawski, S. et al. Tunable narrowband terahertz emission from mastered laser–electron beam interaction. Nat. Phys. 4, 390–393 (2008).

    Article  Google Scholar 

  33. Zhang, Z. et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam. Phys. Rev. Accel. Beams 20, 050701 (2017).

    Article  ADS  Google Scholar 

  34. Antipov, S. et al. Experimental observation of energy modulation in electron beams passing through terahertz dielectric wakefield structures. Phys. Rev. Lett. 108, 144801 (2012).

    Article  ADS  Google Scholar 

  35. Antipov, S. et al. Subpicosecond bunch train production for a tunable mJ level THz source. Phys. Rev. Lett. 111, 4629–4638 (2013).

    Article  Google Scholar 

  36. Lemery, F. et al. Passive ballistic microbunching of non-ultrarelativistic electron bunches using electromagnetic wakefields in dielectric-lined waveguides. Phys. Rev. Lett. 122, 044801 (2019).

    Article  ADS  Google Scholar 

  37. Musumeci, P., Li, R. K. & Marinelli, A. Nonlinear longitudinal space charge oscillations in relativistic electron beams. Phys. Rev. Lett. 106, 184801 (2011).

    Article  ADS  Google Scholar 

  38. Musumeci, P. et al. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation. Phys. Rev. Spec. Top. Accel. Beams 16, 100701 (2013).

    Article  ADS  Google Scholar 

  39. Zhang, Z. et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation. Phys. Rev. Lett. 116, 184801 (2016).

    Article  ADS  Google Scholar 

  40. Geloni, G., Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Benchmark of ASTRA with analytical solution for the longitudinal plasma oscillation problem. In Proc. 26th International Free Electron Laser Conference and 11th FEL Users Workshop 2004 MOPOS09 (JACoW Publishing, 2004).

  41. Reiche, S. Update on the FEL code Genesis 1.3. In Proc. FEL2014, 36th International Free Electron Laser Conference (eds Chrin, J. et al.) TUP019 (JACoW Publishing, 2014).

  42. Borland, M. ELEGANT: A flexible SDDS-compliant code for accelerator simulation. Technical Report (Advanced Photon Source LS-287, 2000);

Download references


This work was supported by the National Natural Science Foundation of China (NSFC grant no. 11835004).

Author information

Authors and Affiliations



Y.L., L.Y. and C.T. conceived and designed the experiments. Y.L. conducted the experiments with the help from Z.L., Q.T., T.L., X.L., Y.D., J.S. and C.C. The simulations on beam dynamics were performed by Y.L. The manuscript was written by Y.L. with contributions from Z.L., L.Y., R.L., W.H. and C.T. Management and oversight of the project was provided by L.Y. and C.T.

Corresponding author

Correspondence to Lixin Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Scheme for drive laser pulse train generation and measurements.

Supplementary information

Supplementary Information

Contents: (1) laser pulse width optimization and measurements; (2) linearization of energy chirps with an X-band harmonic cavity. Supplementary Figs. 1 and 2 and Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Liu, Z., Tian, Q. et al. Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation. Nat. Photon. 17, 259–263 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing