Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geometric filterless photodetectors for mid-infrared spin light

Abstract

Free-space circularly polarized light (CPL) detection, requiring polarizers and wave plates, is well established, but such a spatial degree of freedom is unfortunately absent in integrated on-chip optoelectronics. The filterless CPL photodetectors reported so far suffer from an intrinsic small discrimination ratio, vulnerability to the non-CPL field components and low responsivity. Here we report a distinct paradigm of geometric photodetectors in the mid-infrared, exhibiting a substantial discrimination ratio of 84, a close-to-perfect CPL-specific response, a zero-bias responsivity of 392 V W−1 at room temperature and a detectivity of ellipticity down to 0.03° Hz−1/2. Our approach makes use of a plasmonic nanostructures array with judiciously designed symmetry, assisted by graphene ribbons, to electrically read their near-field optical information. This geometry-empowered recipe for infrared photodetectors provides a robust, direct, strict and high-quality solution to on-chip filterless CPL detection and unlocks new opportunities for integrated functional optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of geometric photodetectors for CPL-specific detection.
Fig. 2: Mirror-symmetric meta-atoms with infinite discrimination ratio.
Fig. 3: Rotational symmetry of the polarization-dependent responsivities in meta-atoms.
Fig. 4: Enhanced CPL-specific detection using graphene ribbons.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in this paper are present in the paper or the Supplementary Information. Additional data related to this paper may be requested from the corresponding authors upon request.

References

  1. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  ADS  Google Scholar 

  2. Martínez, A. Polarimetry enabled by nanophotonics. Science 362, 750–751 (2018).

    Article  ADS  Google Scholar 

  3. Xiong, J. & Wu, S.-T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021).

    Article  Google Scholar 

  4. Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    Article  ADS  Google Scholar 

  5. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  6. Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006).

    Article  ADS  Google Scholar 

  7. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  Google Scholar 

  8. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  ADS  Google Scholar 

  9. Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012).

    Article  ADS  Google Scholar 

  10. Li, Z. et al. Non-Hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res. 171, 1–20 (2021).

    Article  Google Scholar 

  11. Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).

    Article  ADS  Google Scholar 

  12. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).

    Article  ADS  Google Scholar 

  13. Bai, J. et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photon. Res. 7, 1051–1060 (2019).

    Article  Google Scholar 

  14. Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light: Sci. Appl. 8, 78 (2019).

    Article  ADS  Google Scholar 

  15. Ishii, A. & Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 6, eabd3274 (2020).

    Article  ADS  Google Scholar 

  16. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Article  ADS  Google Scholar 

  17. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Article  ADS  Google Scholar 

  18. Yang, Y., Da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon. 7, 634–638 (2013).

    Article  ADS  Google Scholar 

  19. Zhang, L. et al. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 12, 142 (2021).

    Article  ADS  Google Scholar 

  20. Afshinmanesh, F., White, J. S., Cai, W. & Brongersma, M. L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 1, 125–129 (2012).

    Article  ADS  Google Scholar 

  21. Li, L. et al. Monolithic full-Stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector. ACS Nano 14, 16634–16642 (2020).

    Article  Google Scholar 

  22. Lu, F., Lee, J., Jiang, A., Jung, S. & Belkin, M. A. Thermopile detector of light ellipticity. Nat. Commun. 7, 12994 (2016).

    Article  ADS  Google Scholar 

  23. Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    Article  Google Scholar 

  24. Sun, X. et al. Topological insulator metamaterial with giant circular photogalvanic effect. Sci. Adv. 7, eabe5748 (2021).

    Article  ADS  Google Scholar 

  25. Hatano, T., Ishihara, T., Tikhodeev, S. G. & Gippius, N. A. Transverse photovoltage induced by circularly polarized light. Phys. Rev. Lett. 103, 103906 (2009).

    Article  ADS  Google Scholar 

  26. Shalygin, V. A., Moldavskaya, M. D., Danilov, S. N., Farbshtein, I. I. & Golub, L. E. Circular photon drag effect in bulk tellurium. Phys. Rev. B 93, 045207 (2016).

    Article  ADS  Google Scholar 

  27. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    Article  ADS  Google Scholar 

  28. Ganichev, S. D. et al. Subnanosecond ellipticity detector for laser radiation. Appl. Phys. Lett. 91, 091101 (2007).

    Article  ADS  Google Scholar 

  29. Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article  ADS  Google Scholar 

  30. Chen, Y. et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 4, 113–124 (2022).

    Article  Google Scholar 

  31. Movsesyan, A., Besteiro, L. V., Kong, X., Wang, Z. & Govorov, A. O. Engineering strongly chiral plasmonic lattices with achiral unit cells for sensing and photodetection. Adv. Opt. Mater. 10, 2101943 (2022).

    Article  Google Scholar 

  32. Zu, S. et al. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures. ACS Nano 12, 3908–3916 (2018).

    Article  Google Scholar 

  33. Horrer, A. et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Lett. 20, 509–516 (2020).

    Article  ADS  Google Scholar 

  34. Chen, Y., Gao, J. & Yang, X. Direction‐controlled bifunctional metasurface polarizers. Laser Photon. Rev. 12, 1800198 (2018).

    Article  ADS  Google Scholar 

  35. Chen, Y., Yang, X. & Gao, J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci. Appl. 7, 84 (2018).

    Article  ADS  Google Scholar 

  36. Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article  ADS  Google Scholar 

  37. Wei, J., Xu, C., Dong, B., Qiu, C.-W. & Lee, C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021).

    Article  ADS  Google Scholar 

  38. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  ADS  Google Scholar 

  39. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  ADS  Google Scholar 

  40. Song, J. C. W. & Levitov, L. S. Shockley–Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article  ADS  Google Scholar 

  41. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  42. Sturman, B. I. & Fridkin, V. M. in Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials, 8 (CRC Press, 1992).

  43. Liu, J., Xia, F., Xiao, D., García de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).

    Article  ADS  Google Scholar 

  44. Hsu, A. L. et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 15, 7211–7216 (2015).

    Article  ADS  Google Scholar 

  45. Zeng, L. et al. Van der Waals epitaxial growth of mosaic‐like 2D platinum ditelluride layers for room‐temperature mid‐infrared photodetection up to 10.6 µm. Adv. Mater. 32, 2004412 (2020).

    Article  Google Scholar 

  46. Olbrich, P. et al. Ratchet effects induced by terahertz radiation in heterostructures with a lateral periodic potential. Phys. Rev. Lett. 103, 090603 (2009).

    Article  ADS  Google Scholar 

  47. Yi, S. et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 13, 1143–1147 (2018).

    Article  ADS  Google Scholar 

  48. Kim, S. J. et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat. Commun. 9, 316 (2018).

    Article  ADS  Google Scholar 

  49. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  ADS  Google Scholar 

  50. Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Research Foundation (grant no. NRF-CRP22-2019-0006) and Advanced Research and Technology Innovation Centre (grant no. A-0005947-16-00). C.W.Q acknowledges the financial support from the National Research Foundation (grant no. NRF-CRP26-2021-0004). C.L. acknowledges financial support from the National Research Foundation Singapore (grant no. NRF-CRP15-2015-02). Y.C. acknowledges support from start-up funding of the University of Science and Technology of China and the CAS Pioneer Hundred Talents Program. Y.L. acknowledges support from the National Natural Science Foundation of China (grant no. 92163123). W.L. acknowledges financial support from the National Natural Science Foundation of China (grants nos. 62134009 and 62121005) and the Innovation Grant of Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP). K.S.N. is grateful to the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials, I-FIM, project no. EDUNC-33-18-279-V12) and Royal Society (UK, grant no. RSRP\R\190000) for support.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and C.-W.Q. conceived the project. J.W. and Y.C. carried out the theoretical analysis and numerical simulations. J.W. fabricated the samples. J.W., J.X. and C.L. carried out and contributed to the device characterization. J.W., Y.C., Y.L., W.L., C.L., K.S.N. and C.-W.Q. discussed and analysed the numerical and experimental results. All authors discussed and contributed to the manuscript. C.-W.Q. oversaw the whole project.

Corresponding authors

Correspondence to Chengkuo Lee or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–27 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Chen, Y., Li, Y. et al. Geometric filterless photodetectors for mid-infrared spin light. Nat. Photon. 17, 171–178 (2023). https://doi.org/10.1038/s41566-022-01115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01115-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing