Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated passive nonlinear optical isolators

Abstract

Fibre and bulk optical isolators are widely used to stabilize laser cavities by preventing unwanted feedback. However, their integrated counterparts have been slow to be adopted. Although several strategies for on-chip optical isolation have been realized, these rely on either integration of magneto-optic materials or high-frequency modulation with acousto-optic or electro-optic modulators. Here we demonstrate an integrated approach for passively isolating a continuous-wave laser using the intrinsically non-reciprocal Kerr nonlinearity in ring resonators. Using silicon nitride as a model platform, we achieve single ring isolation of 17–23 dB with 1.8–5.5-dB insertion loss, and a cascaded ring isolation of 35 dB with 5-dB insertion loss. Employing these devices, we demonstrate hybrid integration and isolation with a semiconductor laser chip.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Theory of operation.
Fig. 2: Isolation measurement.
Fig. 3: Performance optimization.
Fig. 4: Isolator cascade.
Fig. 5: DFB hybrid integration.

Data availability

All data are available from the corresponding authors upon reasonable request.

References

  1. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  2. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  3. de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).

    Article  ADS  Google Scholar 

  4. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  5. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  6. Yang, K. Y. et al. Inverse-designed multi-dimensional silicon photonic transmitters. Preprint at https://arxiv.org/abs/2103.14139 (2021).

  7. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article  ADS  Google Scholar 

  8. Liu, Y. et al. A photonic integrated circuit based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article  ADS  Google Scholar 

  9. Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

    Article  ADS  Google Scholar 

  10. Srinivasan, K. & Stadler, B. J. H. Magneto-optical materials and designs for integrated TE-and TM-mode planar waveguide isolators: a review. Opt. Mater. Express 8, 3307–3318 (2018).

    Article  ADS  Google Scholar 

  11. Du, Q. et al. Monolithic on-chip magneto-optical isolator with 3-dB insertion loss and 40-dB isolation ratio. ACS Photonics 5, 5010–5016 (2018).

    Article  Google Scholar 

  12. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  13. Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7, 1555–1562 (2020).

    Article  ADS  Google Scholar 

  14. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  15. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  16. Kim, J. H., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  17. Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    Article  ADS  Google Scholar 

  18. Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).

    Article  ADS  Google Scholar 

  19. Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    Article  ADS  Google Scholar 

  20. Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic autler–townes splitting. Nat. Photon. 15, 822–827 (2021).

    Article  ADS  Google Scholar 

  21. Sounas, D. L., Soric, J. & Alu, A. Broadband passive isolators based on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).

    Article  Google Scholar 

  22. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based lidar. Nat. Photon. 14, 369–374 (2020).

    Article  ADS  Google Scholar 

  23. Hua, S. et al. Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun. 7, 13657 (2016).

    Article  ADS  Google Scholar 

  24. Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Article  ADS  Google Scholar 

  25. Cao, Q.-T. et al. Reconfigurable symmetry-broken laser in a symmetric microcavity. Nat. Commun. 11, 1136 (2020).

    Article  ADS  Google Scholar 

  26. Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Article  ADS  Google Scholar 

  27. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photon. 14, 57–62 (2020).

    Article  ADS  Google Scholar 

  28. Jung, H. et al. Tantala Kerr nonlinear integrated photonics. Optica 8, 811–817 (2021).

    Article  ADS  Google Scholar 

  29. Lu, X., Lee, J. Y., Rogers, S. & Lin, Q. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express 22, 30826–30832 (2014).

    Article  ADS  Google Scholar 

  30. Guidry, M. A. et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 7, 1139–1142 (2020).

    Article  ADS  Google Scholar 

  31. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/w. Optica 6, 1455–1460 (2019).

    Article  ADS  Google Scholar 

  32. Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).

    Article  ADS  Google Scholar 

  33. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article  ADS  Google Scholar 

  34. Del Bino, L., Silver, J. M., Stebbings, S. L. & Del’Haye, P. Symmetry breaking of counter-propagating light in a nonlinear resonator. Sci. Rep. 7, 43142 (2017).

    Article  ADS  Google Scholar 

  35. Cao, Q.-T. et al. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett. 118, 033901 (2017).

    Article  ADS  Google Scholar 

  36. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  ADS  Google Scholar 

  37. Kim, S. et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 8, 372 (2017).

    Article  ADS  Google Scholar 

  38. Gao, M. et al. Probing material absorption and optical nonlinearity of integrated photonic materials. Nat. Commun. 13, 3323 (2022).

    Article  ADS  Google Scholar 

  39. Padmaraju, K. & Bergman, K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3, 269–281 (2014).

    Article  Google Scholar 

  40. Herrmann, J. F. et al. Mirror symmetric on-chip frequency circulation of light. Nat. Photon. 16, 603–608 (2022).

    Article  ADS  Google Scholar 

  41. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  42. Dostart, N., Gevorgyan, H., Onural, D. & Popović, M. A. Optical isolation using microring modulators. Opt. Lett. 46, 460–463 (2021).

    Article  ADS  Google Scholar 

  43. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Carlson, T. Briles, J. Zang, J. Black, S.-P. Yu, F. M. Mayor, J. F. Herrmann, A. H. Safavi-Naeini, S. Papp and R. Trivedi for collaboration and discussions, and L. Wu and K. Vahala for assistance with the DFB laser. A.W. acknowledges the Herb and Jane Dwight Stanford Graduate Fellowship (SGF) and the NTT Research Fellowship for support. G.H.A. acknowledges support from STMicroelectronics Stanford Graduate Fellowship (SGF) and Kwanjeong Educational Foundation. K.V.G. acknowledges support from the Research Foundation – Flanders (FWO) (12ZB520N). The authors from Stanford acknowledge funding support from DARPA under the LUMOS programme. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation under award no. ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

A.D.W., G.H.A., K.V.G. and K.Y.Y. conceived of the project. A.D.W., G.H.A. and K.V.G. performed the experiments. G.H.A. developed the silicon-nitride fabrication process and fabricated the devices. L.C. and J.E.B. provided the semiconductor laser chip and experimental guidance. J.V. supervised the project. All authors contributed to data analysis and writing of the manuscript.

Corresponding authors

Correspondence to Alexander D. White or Geun Ho Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sunil Mittal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Discussion and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

White, A.D., Ahn, G.H., Gasse, K.V. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023). https://doi.org/10.1038/s41566-022-01110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01110-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing