Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient selenium-integrated TADF OLEDs with reduced roll-off

Subjects

Abstract

Organic light emitters based on multiresonance-induced thermally activated delayed fluorescent materials have great potential for realizing efficient, narrowband organic light-emitting diodes (OLEDs). However, at high brightness operation, efficiency roll-off attributed to the slow reverse intersystem crossing (RISC) process hinders the use of multiresonance-induced thermally activated delayed fluorescent materials in practical applications. Here we report a heavy-atom incorporating emitter, BNSeSe, which is based on a selenium-integrated boron–nitrogen skeleton and exhibits 100% photoluminescence quantum yield and a high RISC rate (kRISC) of 2.0 × 106 s−1. The corresponding green OLEDs exhibit excellent external quantum efficiencies of up to 36.8% and ultra-low roll-off character at high brightnesses (with very small roll-off values of 2.8% and 14.9% at 1,000 cd m−2 and 10,000 cd m−2, respectively). Furthermore, the outstanding capability to harvest triplet excitons also enables BNSeSe to be a superior sensitizer for a hyperfluorescence OLED, which shows state-of-the-art performance with a high excellent external quantum efficiency of 40.5%, power efficiency beyond 200 lm W−1, and luminance close to 20,0000 cd m−2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular design.
Fig. 2: Photophysical properties.
Fig. 3: OLED (devices A−D).
Fig. 4: Hyperfluorescence OLED.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request. Source Data are provided with this paper.

References

  1. Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    Article  Google Scholar 

  2. Suresh, S. M., Hall, D., Beljonne, D., Olivier, Y. & Zysman-Colman, E. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes. Adv. Funct. Mater. 30, 1908677–1908701 (2020).

    Article  Google Scholar 

  3. Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photon. 13, 678–682 (2019).

    Article  ADS  Google Scholar 

  4. Liang, X. et al. Peripheral amplification of multi-resonance induced thermally activated delayed fluorescence for highly efficient OLEDs. Angew. Chem. Int. Ed. 57, 11316–11320 (2018).

    Article  Google Scholar 

  5. Zhang, Y. et al. Multi-resonance induced thermally activated delayed fluorophores for narrowband green OLEDs. Angew. Chem. Int. Ed. 58, 16912–16917 (2019).

    Article  Google Scholar 

  6. Yang, M., Park, I. S. & Yasuda, T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics. J. Am. Chem. Soc. 142, 19468–19472 (2020).

    Article  Google Scholar 

  7. Xu, Y. et al. Highly efficient electroluminescent materials with high color purity based on strong acceptor attachment onto B-N-containing multiple resonance frameworks. CCS Chem. 3, 2077–2091 (2021).

    Google Scholar 

  8. Liu, Y., Xiao, X., Ran, Y., Bin, Z. & You, J. Molecular design of thermally activated delayed fluorescent emitters for narrowband orange–red OLEDs boosted by a cyano-functionaliztion strategy. Chem. Sci. 12, 9408–9412 (2021).

    Article  Google Scholar 

  9. Zhang, Y. et al. Multi-resonance deep-red emitters with shallow potential-energy surfaces to surpass energy-gap law. Angew. Chem. Int. Ed. 60, 20498–20503 (2021).

    Article  Google Scholar 

  10. Qi, Y. et al. Perpheral decoration of multi-resonance molecules as a versatile approach for simultaneous long-wavelength and narrowband emission. Adv. Funct. Mater. 31, 2102017–2102023 (2021).

    Article  Google Scholar 

  11. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  ADS  Google Scholar 

  12. Hirata, S. et al. Highly efcient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2015).

    Article  ADS  Google Scholar 

  13. Liu, Y. et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    Article  ADS  Google Scholar 

  14. Wong, M. Y. & Zysman-colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444–1605497 (2017).

    Article  Google Scholar 

  15. Brédas, J.-L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5004 (2004).

    Article  Google Scholar 

  16. Schmidt, K. et al. J. Phys. Chem. A 111, 10490–10499 (2017).

    Article  Google Scholar 

  17. Samanta, P. K., Kim, D., Coropceanu, V. & Brédas, J.-L. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet vs triplet excited states. J. Am. Chem. Soc. 139, 4042–4051 (2017).

    Article  Google Scholar 

  18. Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016).

    Article  ADS  Google Scholar 

  19. Kim, G. H. et al. Controlling the exciton lifetime of blue thermally activated delayed fluorescence emitters using a heteroatom-containing pyridoindole donor moiety. Mater. Horiz. 4, 619–624 (2017).

    Article  Google Scholar 

  20. Turro, N. J., Kavarnos, G. J., Cole, T., Scribe, P. & Dalton, J. C. Molecular photochemistry. XXXIX. External heavy-atom-induced spin–obital coupling. Spectroscopic study of naphthonorbornanes. J. Am. Chem. Soc. 93, 1032–1034 (1971).

    Article  Google Scholar 

  21. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article  ADS  Google Scholar 

  22. Yang, Z. et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem. Int. Ed. 55, 2181–2185 (2016).

    Article  Google Scholar 

  23. Yan, Z.-A., Lin, X., Sun, S., Ma, X. & Tian, H. Activating room-temperature phosphorescence of organic luminophores via external heavy-atom effect and rigidity of ionic polymer matrix. Angew. Chem. Int. Ed. 60, 19735–19739 (2021).

    Article  Google Scholar 

  24. Hua, T. et al. Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. Chem. Eng. J. 426, 131169–131177 (2021).

    Article  Google Scholar 

  25. Zhang, D. et al. High-effciency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet–triplet exchange energy. Adv. Mater. 26, 5050–5055 (2014).

    Article  Google Scholar 

  26. Jeon, S. O. et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photon. 15, 208–215 (2021).

    Article  ADS  Google Scholar 

  27. Chan, C. Y. et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photon. 15, 203–207 (2021).

    Article  ADS  Google Scholar 

  28. Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys. Rev. B 62, 10967–10977 (2000).

    Article  ADS  Google Scholar 

  29. Hertel, D. & Meerholz, K. Triplet-polaron quenching in conjugated polymers. J. Phys. Chem. B 111, 12075–12080 (2007).

    Article  Google Scholar 

  30. Giebink, N. C. & Forrest, S. R. Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302–073305 (2009).

    Article  ADS  Google Scholar 

  31. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article  Google Scholar 

  32. Einzinger, M. et al. Shorter exciton lifetimes via an external heavy-atom effect: alleviating the effects of bimolecular processes in organic light-emitting diodes. Adv. Mater. 29, 1701987–1701996 (2017).

    Article  Google Scholar 

  33. Wang, D., Cheng, C., Tsuboi, T. & Zhang, Q. Degradation mechanisms in blue organic light-emitting diodes. CCS Chem. 2, 1278–1296 (2020).

    Article  Google Scholar 

  34. Zhang, D. et al. Efficient and stable deep-blue fluorescent organic light-emitting diodes employing a sensitizer with fast triplet upconversion. Adv. Mater. 32, 1908355–1908343 (2020).

    Article  Google Scholar 

  35. Zhan, L. et al. Copper(I) complex as sensitizer enables high-performance organic light-emitting diodes with very low efficience roll-off. Adv. Funct. Mater. 31, 2106345 (2021).

  36. Gao, X. et al. Evaluation of spin-orbit couplings with linear-response time dependent density functional methods. J. Chem. Theory Comput. 13, 515–524 (2017).

    Article  Google Scholar 

  37. Zhang, D. et al. Highly efficient full-color thermally activated delayed fluorescent organic light-emitting diodes: extremely low efficiency roll-off ultilizing a host with small singlet-triplet splliting. ACS Appl. Mater. Interfaces 9, 4769–4777 (2017).

    Article  Google Scholar 

  38. Zhang, Y. et al. Achieving pure green electroluminescence with CIEy of 0.69 and EQE of 28.2% from an aza-fused multi-resonance emitter. Angew. Chem. Int. Ed. 59, 17499–17503 (2020).

    Article  Google Scholar 

  39. Xu, Y. et al. Constructing charge-transfer excited states based on frontier molecular orbital engineering: narrowband green electroluminescence with high color purity and efficiency. Angew. Chem. Int. Ed. 59, 17442–17446 (2020).

    Article  Google Scholar 

  40. Braveenth, R. et al. Achieving narrow FWHM and high EQE over 38% in blue OLEDs using rigid heteroatom-based deep blue TADF sensitized host. Adv. Funct. Mater. 31, 2105805 (2021).

  41. Jiang, P. et al. Quenching-resistant multi-resonance TADF emitter realizes 40% extaernal quantum efficiency in narrowband electroluminescence at high doping level. Adv. Mater. 34, 2106954–2106960 (2022).

    Article  Google Scholar 

  42. Qi, Y. et al. Peripheral decoration of multi-resonance molecules as a versatile approach for simultaneous long-wavelength and narrowband emission. Adv. Funct. Mater. 31, 2102017–2102023 (2021).

    Article  Google Scholar 

  43. Gaussian 09 (Revision C.01), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J., Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

  44. Kállay, M. et al. The MRCC program system: accurate quantum chemistry from water to proteins. J. Chem. Phys. 152, 074107–074124 (2020).

    Article  ADS  Google Scholar 

  45. Kállay, M. et al. MRCC: A Quantum Chemical program Suite (MRCC, 2022); www.mrcc.hu

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (grant no. 52130308 to C.Y.), the Shenzhen Science and Technology Program (grant nos. KQTD20170330110107046 and ZDSYS20210623091813040 to C.Y.) and the China Postdoctoral Science Foundation (grant no. 2021M692183 to Y.X.H.). We thank C. Zhong (Department of Chemistry, Wuhan University) for the assistance with theoretical calculations, as well as Y. Gu and X. Zhou (TCL China Star Optoelectronics Technology) for their assistance with the optical simulation of the devices. We also thank the Instrumental Analysis Center of Shenzhen University for analytical support.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. supervised the projects. C.Y., Y.X.H., Z.H. and Y.Z. designed the TADF emitters. Y.X.H., T.H. and Y.Qi synthesized emitters. Y.X.H. characterized the emitters and measured the photophysical and electrochemical properties. J.M. and H.X. fabricated the OLED devices, measured the electroluminescence and prepared thin films. Y.X.H. and H.L. performed theoretical calculations. Y.Qiu conducted the transient photoluminescnece measurements. Y.X.H., X.C. and C.Y. contributed to the manuscript writing. Y.X.H., H.L., J.M. and C.Y. contributed to discussions. All authors discussed the progress of the research and reviewed the manuscript.

Corresponding author

Correspondence to Chuluo Yang.

Ethics declarations

Competing interests

SZU has filed patent applications on materials and devices. C.Y., Y.X.H. and J.M. are the authors of the invention. CN patent application no. 2021113469101 (pending). The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Fernando Dias and Hironori Kaji for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supporting information.

Source data

Source Data Fig. 2

Original data of Fig. 2.

Source Data Fig. 3

Original data of Fig. 3.

Source Data Fig. 4

Original data of Fig. 4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y.X., Miao, J., Hua, T. et al. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat. Photon. 16, 803–810 (2022). https://doi.org/10.1038/s41566-022-01083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01083-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing