Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Excitonic resonances control the temporal dynamics of nonlinear optical wave mixing in monolayer semiconductors

Abstract

Monolayer semiconductors are an emerging platform for strong nonlinear light–matter interactions that are enhanced by the giant oscillator strength of tightly bound excitons. Little attention has been paid to the impact of excitonic resonances on the temporal dynamics of such nonlinearities, since harmonic generation and optical wave mixing are generally considered instantaneous processes. We find that a significant time difference, ranging from −40 to +120 fs, is necessary between two light pulses for optimal sum-frequency generation (SFG) and four-wave mixing (FWM) to occur from monolayer WSe2 when one of the pulses is in resonance with an excitonic transition. These resonances involve both band-edge A excitons and high-lying excitons that comprise electrons from conduction bands far above the bandgap. Numerical simulations in the density-matrix formalism rationalize the distinct dynamics of SFG and FWM. The interpulse delays for maximal SFG and FWM are governed primarily by the lifetime of the one-photon and two-photon resonant states, respectively. The method therefore offers an unconventional probe of the dynamics of excitonic states accessible with either one-photon or two-photon transitions. Remarkably, the longest delay times occur at the lowest excitation powers, indicating a strong nonlinearity that offers exploration potential for excitonic quantum nonlinear optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Delayed SFG and FWM from monolayer WSe2.
Fig. 2: Excitonic effects on the delay time for maximal SFG and FWM.
Fig. 3: Nonlinear optical wave-mixing spectroscopy simulated using the density-matrix formalism.
Fig. 4: Simulated delay times for maximal SFG and FWM intensities.
Fig. 5: Simulated dependence of the delay time for maximal SFG and FWM on the lifetime of the excitonic states.

Similar content being viewed by others

Data availability

Any additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The Mathematica code used for the numerical simulations discussed in this paper is available from the corresponding authors upon reasonable request.

References

  1. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

  2. Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).

  3. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  4. Garmire, E. Nonlinear optics in daily life. Opt. Express 21, 30532–30544 (2013).

    Article  ADS  Google Scholar 

  5. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).

  6. Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (2013).

    Article  Google Scholar 

  7. Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018).

    Article  Google Scholar 

  8. Schneider, C. et al. Two-dimensional semiconductors in the regime of strong light–matter coupling. Nat. Commun. 9, 2695 (2018).

    Article  ADS  Google Scholar 

  9. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

    Article  ADS  Google Scholar 

  10. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  Google Scholar 

  11. You, J. W., Bongu, S. R., Bao, Q. & Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8, 63–97 (2019).

    Article  Google Scholar 

  12. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, G.-B. et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    Article  Google Scholar 

  14. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    Article  ADS  Google Scholar 

  15. Lafeta, L. et al. Second- and third-order optical susceptibilities across excitons states in 2D monolayer transition metal dichalcogenides. 2D Mater. 8, 035010 (2021).

    Article  Google Scholar 

  16. Hernandez-Rueda, J., Noordam, M. L., Komen, I. & Kuipers, L. Nonlinear optical response of a WS2 monolayer at room temperature upon multicolor laser excitation. ACS Photonics 8, 550–556 (2021).

    Article  Google Scholar 

  17. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  ADS  Google Scholar 

  18. Yao, K. et al. Continuous wave sum frequency generation and imaging of monolayer and heterobilayer two-dimensional semiconductors. ACS Nano 14, 708–714 (2020).

    Article  Google Scholar 

  19. Lin, K.-Q. et al. Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe2. Nat. Commun. 12, 5500 (2021).

    Article  ADS  Google Scholar 

  20. Lin, K.-Q., Bange, S. & Lupton, J. M. Quantum interference in second-harmonic generation from monolayer WSe2. Nat. Phys. 15, 242–246 (2019).

    Article  Google Scholar 

  21. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  22. Phillips, M. C. et al. Electromagnetically induced transparency in semiconductors via biexciton coherence. Phys. Rev. Lett. 91, 183602 (2003).

    Article  ADS  Google Scholar 

  23. Kim, D.-S. et al. Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: direct evidence for the dominance of interaction effects. Phys. Rev. Lett. 69, 2725–2728 (1992).

    Article  ADS  Google Scholar 

  24. Saiki, T., Kuwata-Gonokami, M., Matsusue, T. & Sakaki, H. Photon echo induced by two-exciton coherence in a GaAs quantum well. Phys. Rev. B 49, 7817–7820 (1994).

    Article  ADS  Google Scholar 

  25. Trovatello, C. et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat. Photonics 15, 6–10 (2021).

    Article  ADS  Google Scholar 

  26. Dai, Y. et al. Electrical control of interband resonant nonlinear optics in monolayer MoS2. ACS Nano 14, 8442–8448 (2020).

    Article  Google Scholar 

  27. Liu, S. et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun. 9, 2507 (2018).

    Article  ADS  Google Scholar 

  28. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

    Article  ADS  Google Scholar 

  29. Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).

    Article  ADS  Google Scholar 

  30. Cundiff, S. T. et al. Rabi flopping in semiconductors. Phys. Rev. Lett. 73, 1178–1181 (1994).

    Article  ADS  Google Scholar 

  31. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  32. Martin, E. W. et al. Encapsulation narrows and preserves the excitonic homogeneous linewidth of exfoliated monolayer MoSe2. Phys. Rev. Appl. 14, 021002 (2020).

    Article  ADS  Google Scholar 

  33. Fang, H. H. et al. Control of the exciton radiative lifetime in van der Waals heterostructures. Phys. Rev. Lett. 123, 067401 (2019).

    Article  ADS  Google Scholar 

  34. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photonics 8, 685–694 (2014).

    Article  ADS  Google Scholar 

  35. Wild, D. S., Shahmoon, E., Yelin, S. F. & Lukin, M. D. Quantum nonlinear optics in atomically thin materials. Phys. Rev. Lett. 121, 123606 (2018).

    Article  ADS  Google Scholar 

  36. Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

    Article  ADS  Google Scholar 

  37. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

  38. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Schüller and R. Huber for insightful discussions. Financial support is gratefully acknowledged from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) SFB 1277 (project-ID 314695032) projects B03 (J.M.L. and S.B.) and B11 (K.-Q.L.), SPP 2244 (project-ID LI 3725/1-1, 443378379) (K.-Q.L. and S.B.) and from DFG project number 439215932 (J.M.L.). Growth of the hBN crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan (grant number JPMXP0112101001) and JSPS KAKENHI (grant numbers 19H05790 and JP20H00354).

Author information

Authors and Affiliations

Authors

Contributions

K.-Q.L. conceived and supervised the project. J.M.B., L.C., P.W., K.-Q.L. and S.B. carried out the experiments and simulations. S.B. wrote the simulation code. K.W. and T.T. provided the hBN crystals. All authors analysed the data, discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Kai-Qiang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Giulio Cerullo and Christoph Lienau for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–9 and Table 1.

Source data

Source Data Fig. 1

Original data for the plots.

Source Data Fig. 2

Original data for the plots.

Source Data Fig. 3

Original data for the plots.

Source Data Fig. 4

Original data for the plots.

Source Data Fig. 5

Original data for the plots.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, J.M., Chen, L., Wilhelm, P. et al. Excitonic resonances control the temporal dynamics of nonlinear optical wave mixing in monolayer semiconductors. Nat. Photon. 16, 777–783 (2022). https://doi.org/10.1038/s41566-022-01080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01080-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing