Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequential generation of multiphoton entanglement with a Rydberg superatom

Abstract

Multiqubit entanglement is an indispensable resource for quantum information science. In particular, the entanglement of photons is of conceptual interest due to its implications in measurement-based quantum computing, communication and metrology. The traditional way of spontaneous parametric downconversion already demonstrates the entanglement of up to a dozen photons but is hindered by its probabilistic nature. Here we experimentally demonstrate an efficient approach for multiphoton generation with a Rydberg superatom, a mesoscopic atomic ensemble under Rydberg blockade. Using it as an efficient single-photon interface, we iterate the photon creation process that gives rise to a train of single photons entangled in the time-bin degree of freedom. Photon correlations verify entanglement up to six qubits. The overall efficiency to detect one photon is 9.4%. After correcting the measurement inefficiencies, we obtain a scaling factor of 27%, surpassing previous results and paving the way for larger-scale photonic entanglement.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Scheme for multiphoton entanglement generation.
Fig. 2: Characterization of multiphoton entanglements.
Fig. 3: Fidelities of multiphoton entanglement.

Data availability

The data are available via Zenodo at https://zenodo.org/record/6732841 (ref. 31).

References

  1. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).

    ADS  Article  Google Scholar 

  2. Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    ADS  Article  Google Scholar 

  3. Gheri, K. M., Saavedra, C., Törmä, P., Cirac, J. I. & Zoller, P. Entanglement engineering of one-photon wave packets using a single-atom source. Phys. Rev. A 58, R2627–R2630 (1998).

    ADS  Article  Google Scholar 

  4. Saavedra, C., Gheri, K. M., Törmä, P., Cirac, J. I. & Zoller, P. Controlled source of entangled photonic qubits. Phys. Rev. A 61, 062311 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  5. Schön, C. et al. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

    ADS  Article  Google Scholar 

  6. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    ADS  Article  Google Scholar 

  7. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    ADS  Article  Google Scholar 

  8. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    ADS  Article  Google Scholar 

  9. Li, J.-P. et al. Multiphoton graph states from a solid-state single-photon source. ACS Photonics 7, 1603–1610 (2020).

    Article  Google Scholar 

  10. Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).

    ADS  Article  Google Scholar 

  11. Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).

    ADS  Article  Google Scholar 

  12. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010).

    ADS  Article  Google Scholar 

  13. Dudin, Y., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790–794 (2012).

    Article  Google Scholar 

  14. Saffman, M. & Walker, T. G. Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002).

    ADS  Article  Google Scholar 

  15. Dudin, Y. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    ADS  Article  Google Scholar 

  16. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  17. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    ADS  Article  Google Scholar 

  18. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    ADS  Article  Google Scholar 

  19. Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009).

    Article  Google Scholar 

  20. Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777–781 (2012).

    ADS  Article  Google Scholar 

  21. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    ADS  Article  Google Scholar 

  22. Zwerger, M., Briegel, H. & Dür, W. Measurement-based quantum communication. Appl. Phys. B 122, 50 (2016).

    ADS  Article  Google Scholar 

  23. Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020).

    Google Scholar 

  24. Gao, W.-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nat. Phys. 6, 331–335 (2010).

    Article  Google Scholar 

  25. Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photon. 15, 137–142 (2021).

    ADS  Article  Google Scholar 

  26. Nielsen, A. E. B. & Mølmer, K. Deterministic multimode photonic device for quantum-information processing. Phys. Rev.A 81, 043822 (2010).

    ADS  Article  Google Scholar 

  27. Sun, P.-F. et al. Deterministic time-bin entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 128, 060502 (2022).

    ADS  Article  Google Scholar 

  28. Yang, C.-W. et al. Deterministic measurement of a Rydberg superatom qubit via cavity-enhanced single-photon emission. Optica 9, 853–858 (2022).

    ADS  Article  Google Scholar 

  29. de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A 97, 053803 (2018).

    ADS  Article  Google Scholar 

  30. Levine, H. et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018).

    ADS  Article  Google Scholar 

  31. Yang, C.-W. et al. Data for ‘sequential generation of multiphoton entanglement with a Rydberg superatom’. Zenodo https://doi.org/10.5281/zenodo.6732841 (2022).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (nos. 2017YFA0303902 and 2020YFA0309804); Anhui Initiative in Quantum Information Technologies, National Natural Science Foundation of China; and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

X.-H.B. and J.-W.P. conceived the research and designed the experiment. C.-W.Y. carried out the experiment and collected the data with assistance from all the other authors. C.-W.Y. and X.-H.B. analysed the data. C.-W.Y., X.-H.B. and J.-W.P. wrote the paper with inputs from all the other authors.

Corresponding authors

Correspondence to Xiao-Hui Bao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Figs. 1–12 and references.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, CW., Yu, Y., Li, J. et al. Sequential generation of multiphoton entanglement with a Rydberg superatom. Nat. Photon. 16, 658–661 (2022). https://doi.org/10.1038/s41566-022-01054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01054-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing