Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics

An Author Correction to this article was published on 03 August 2022

This article has been updated

Abstract

Optical nonlinear functions are crucial for various applications in integrated photonics, including all-optical information processing1, photonic neural networks2,3 and on-chip ultrafast light sources4,5. However, the weak native nonlinearity of most nanophotonic platforms has imposed barriers for such functions by necessitating large driving energies, high-Q cavities or integration with other materials with stronger nonlinearity. Here we effectively utilize the strong and instantaneous quadratic nonlinearity of lithium niobate nanowaveguides for the realization of cavity-free all-optical switching. By simultaneous engineering of the dispersion and quasi-phase matching, we design and demonstrate a nonlinear splitter that can achieve ultralow switching energies down to 80 fJ, featuring a fastest switching time of ~46 fs and a lowest energy–time product of 3.7 × 10−27 J s in integrated photonics. Our results can enable on-chip ultrafast and energy-efficient all-optical information processing, computing systems and light sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device design and operating principle.
Fig. 2: Integrated nonlinear splitter and its linear optical characteristics.
Fig. 3: Ultralow-energy nonlinear optical transmission in the integrated nonlinear splitter.
Fig. 4: Femtosecond, femtojoule all-optical switching.
Fig. 5: Performance comparison of various on-chip all-optical switches operating at room temperature.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available at https://figshare.com/s/6fb22ae146577d1ac7c0.

Code availability

The computer code used to perform the nonlinear simulations in this paper is available from the corresponding author upon reasonable request.

Change history

References

  1. Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010).

    Article  ADS  Google Scholar 

  2. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article  ADS  Google Scholar 

  3. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article  ADS  Google Scholar 

  4. Shtyrkova, K. et al. Integrated CMOS-compatible Q-switched mode-locked lasers at 1,900 nm with an on-chip artificial saturable absorber. Opt. Express 27, 3542–3556 (2019).

    Article  ADS  Google Scholar 

  5. Singh, N., Ippen, E. & Kärtner, F. X. Towards CW modelocked laser on chip—a large mode area and NLI for stretched pulse mode locking. Opt. Express 28, 22562–22579 (2020).

    Article  ADS  Google Scholar 

  6. Grinblat, G. et al. Ultrafast sub-30-fs all-optical switching based on gallium phosphide. Sci. Adv. 5, eaaw3262 (2019).

    Article  ADS  Google Scholar 

  7. Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photon. 11, 390–395 (2017).

    Article  ADS  Google Scholar 

  8. Iizuka, N., Kaneko, K. & Suzuki, N. All-optical switch utilizing intersubband transition in GaN quantum wells. IEEE J. Quantum Electron. 42, 765–771 (2006).

    Article  ADS  Google Scholar 

  9. Takahashi, R., Kawamura, Y. & Iwamura, H. Ultrafast 1.55 μm all-optical switching using low-temperature-grown multiple quantum wells. Appl. Phys. Lett. 68, 153–155 (1996).

    Article  ADS  Google Scholar 

  10. Spühler, G. et al. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 81, 27–32 (2005).

    Article  ADS  Google Scholar 

  11. Almeida, V. R. et al. All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004).

    Article  ADS  Google Scholar 

  12. Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).

    Article  ADS  Google Scholar 

  13. Hu, X., Jiang, P., Ding, C., Yang, H. & Gong, Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photon. 2, 185–189 (2008).

    Article  ADS  Google Scholar 

  14. Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511 (2010).

    Article  ADS  Google Scholar 

  15. Yanik, M. F., Fan, S., Soljačić, M. & Joannopoulos, J. D. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28, 2506–2508 (2003).

    Article  ADS  Google Scholar 

  16. Chai, Z. et al. Ultrafast all-optical switching. Adv. Opt. Mater. 5, 1600665 (2017).

    Article  Google Scholar 

  17. Taghinejad, M. & Cai, W. All-optical control of light in micro-and nanophotonics. ACS Photonics 6, 1082–1093 (2019).

    Article  Google Scholar 

  18. Ono, M. et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photon. 14, 37–43 (2020).

    Article  ADS  Google Scholar 

  19. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article  ADS  Google Scholar 

  20. Zhao, J. et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express 28, 19669–19682 (2020).

    Article  ADS  Google Scholar 

  21. Chen, J.-Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244–1245 (2019).

    Article  ADS  Google Scholar 

  22. Rao, A. et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4,600% W−1 cm−2. Opt. Express 27, 25920–25930 (2019).

    Article  ADS  Google Scholar 

  23. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  Google Scholar 

  24. Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).

    Article  ADS  Google Scholar 

  25. Jankowski, M. et al. Quasi-static optical parametric amplification. Optica 9, 273–279 (2022).

    Article  ADS  Google Scholar 

  26. Schiek, R., Solntsev, A. & Neshev, D. Temporal dynamics of all-optical switching in quadratic nonlinear directional couplers. Appl. Phys. Lett. 100, 111117 (2012).

    Article  ADS  Google Scholar 

  27. DeSalvo, R. et al. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett. 17, 28–30 (1992).

    Article  ADS  Google Scholar 

  28. Schiek, R. All-optical switching in the directional coupler caused by nonlinear refraction due to cascaded second-order nonlinearity. Opt. Quantum Electron. 26, 415–431 (1994).

    Article  Google Scholar 

  29. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  ADS  Google Scholar 

  30. Guo, X., Zou, C.-L. & Tang, H. X. 70-db long-pass filter on a nanophotonic chip. Opt. Express 24, 21167–21176 (2016).

    Article  ADS  Google Scholar 

  31. Marandi, A., Ingold, K. A., Jankowski, M. & Byer, R. L. Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared. Optica 3, 324–327 (2016).

    Article  ADS  Google Scholar 

  32. Jiang, H. et al. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett. 42, 3267–3270 (2017).

    Article  ADS  Google Scholar 

  33. Ryckman, J. D. et al. Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators. Opt. Express 20, 13215–13225 (2012).

    Article  ADS  Google Scholar 

  34. Finlayson, N. et al. Picosecond switching induced by saturable absorption in a nonlinear directional coupler. Appl. Phys. Lett. 53, 1144–1146 (1988).

    Article  ADS  Google Scholar 

  35. Li, W. et al. Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014).

    Article  ADS  Google Scholar 

  36. Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  37. Set, S. Y., Yaguchi, H., Tanaka, Y. & Jablonski, M. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Light. Technol. 22, 51–56 (2004).

    Article  Google Scholar 

  38. Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photon. 3, 042005 (2021).

    Article  Google Scholar 

  39. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  ADS  Google Scholar 

  40. Gong, Z., Liu, X., Xu, Y. & Tang, H. X. Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020).

    Article  ADS  Google Scholar 

  41. Gong, Z. et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Opt. Lett. 44, 3182–3185 (2019).

    Article  ADS  Google Scholar 

  42. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  ADS  Google Scholar 

  43. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  44. Jankowski, M. et al. Temporal simultons in optical parametric oscillators. Phys. Rev. Lett. 120, 053904 (2018).

    Article  ADS  Google Scholar 

  45. Zelmon, D. E., Small, D. L. & Jundt, D. Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997).

    Article  ADS  Google Scholar 

  46. Phillips, C. et al. Supercontinuum generation in quasi-phasematched waveguides. Opt. Express 19, 18754–18773 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Device nanofabrication was performed at the Kavli Nanoscience Institute (KNI) at Caltech. We thank K. Vahala and C. Yang for loaning equipment. We also thank J.-H. Bahng, R. Briggs and M.-G. Suh for assistance with the fabrication development process. A.M. gratefully acknowledges support from ARO grant no. W911NF-18-1-0285, NSF grants nos. 1846273 and 1918549, AFOSR award no. FA9550-20-1-0040 and NASA/JPL. We thank NTT Research for financial and technical support.

Author information

Authors and Affiliations

Authors

Contributions

Q.G. and A.M. conceived the project. Q.G. fabricated the devices and performed the measurements, with assistance from R.S., R.N., S.J. and R.M.G. L.L. developed the single-envelope simulation tool. L.L., D.J.D. and A.R. contributed to the design of the device. Q.G. and L.L. analysed the experimental results and performed the simulations. L.L. performed the periodic poling. Q.G. wrote the manuscript, with input from all other authors. A.M. supervised the project.

Corresponding author

Correspondence to Alireza Marandi.

Ethics declarations

Competing interests

Q.G. and A.M. are inventors on a patent application (US patent application no. 17/500,425) that covers the concept and implementation of the all-optical switch described here. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Discussion sections I–XII.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Sekine, R., Ledezma, L. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022). https://doi.org/10.1038/s41566-022-01044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01044-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing