Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


A narrow twist

One hundred years ago, in 1922, Léon Brillouin discovered the scattering of light by sound waves. Within an optical fibre, Brillouin scattering may be used to create narrow-linewidth filters and spectrometers. A twisted optical fibre is now used to reduce these linewidths by over an order of magnitude, down to the sub-MHz level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exploiting Brillouin scattering and ultra-narrow spectral features.


  1. Marpaung, D. et al. Optica 2, 76–83 (2015).

    Article  ADS  Google Scholar 

  2. Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. APL Photon. 6, 71101 (2021).

    Article  Google Scholar 

  3. Vigneron, P.-B. et al. Opt. Lett. 45, 3179–3182 (2020).

    Article  ADS  Google Scholar 

  4. Choksi, N., Liu, Y., Ghasemi, R. & Qian, L. Nat. Photon. (2022).

    Article  Google Scholar 

  5. Dainese, P. et al. Nat. Phys. 2, 388–392 (2006).

    Article  Google Scholar 

  6. Pant, R. et al. Opt. Express 19, 8285–8290 (2011).

    Article  ADS  Google Scholar 

  7. Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Nat. Photon. 9, 199–203 (2015).

    Article  ADS  Google Scholar 

  8. Kittlaus, E. A., Shin, H. & Rakich, P. T. Nat. Photon. 10, 463–467 (2016).

    Article  ADS  Google Scholar 

  9. Casas-Bedoya, A., Morrison, B., Pagani, M., Marpaung, D. & Eggleton, B. J. Opt. Lett. 40, 4154–4157 (2015).

    Article  ADS  Google Scholar 

  10. Gundavarapu, S. et al. Nat. Photon. 13, 60–67 (2019).

    Article  ADS  Google Scholar 

  11. Lifshitz, R. & Roukes, M. Phys. Rev. B 61, 5600–5609 (2000).

    Article  ADS  Google Scholar 

  12. A., S. S., Yelikar, A. B. & Pant, R. Commun. Phys. 3, 109 (2020).

    Article  Google Scholar 

  13. Zadok, A., Zilka, E., Eyal, A., Thévenaz, L. & Tur, M. Opt. Express 16, 21692–21707 (2008).

    Article  ADS  Google Scholar 

  14. Shmilovitch, Z. et al. Opt. Express 19, 25873–25880 (2011).

    Article  ADS  Google Scholar 

  15. Zeng, X. et al. Photon. Res. 10, 711–718 (2022).

    Article  Google Scholar 

  16. Zeng, X. et al. Preprint at (2022).

  17. Brillouin, L. Ann. Phys. (Paris) 9, 88–122 (1922).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Thiago Alegre or Gustavo Wiederhecker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alegre, T., Wiederhecker, G. A narrow twist. Nat. Photon. 16, 482–484 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing