Abstract
Optical aberrations place fundamental limits on the achievable resolution with focusing and imaging. In the context of structured light, optical imperfections and misalignments and perturbing media such as turbulent air, underwater and optical fibre distort the amplitude and phase of the light’s spatial pattern. Here we show that polarization inhomogeneity that defines vectorial structured light is immune to all such perturbations, provided they are unitary. As an example, we study the robustness of vector vortex beams propagating through highly aberrated systems, demonstrating that the inhomogeneous nature of polarization remains unaltered even as the medium itself changes. The unitary nature of the channel allows us to undo this change through a simple lossless operation. This approach paves the way to the versatile application of vectorial structured light, even through non-ideal optical systems, crucial in applications such as imaging and optical communication across noisy channels.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The code used to reproduce the results is available at https://doi.org/10.5281/zenodo.6502858.
Code availability
The code used to reproduce the results is available at https://doi.org/10.5281/zenodo.6502858.
Change history
25 July 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41566-022-01061-4
References
Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).
Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).
Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).
Larocque, H. et al. Reconstructing the topology of optical polarization knots. Nat. Phys. 14, 1079–1082 (2018).
Galvez, E. J., Rojec, B. L., Kumar, V. & Viswanathan, N. K. Generation of isolated asymmetric umbilics in light’s polarization. Phys. Rev. A 89, 031801 (2014).
Zdagkas, A. et al. Observation of toroidal pulses of light. Preprint at https://arxiv.org/abs/2102.03636 (2021).
Keren-Zur, S., Tal, M., Fleischer, S., Mittleman, D. M. & Ellenbogen, T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 10, 1778 (2019).
Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).
Brown, T. G. Unconventional polarization states: beam propagation, focusing, and imaging. Prog. Opt. 56, 81–129 (2011).
Wang, J., Castellucci, F. & Franke-Arnold, S. Vectorial light–matter interaction: exploring spatially structured complex light fields. AVS Quantum Sci. 2, 031702 (2020).
Otte, E., Alpmann, C. & Denz, C. Polarization singularity explosions in tailored light fields. Laser Photonics Rev. 12, 1700200 (2018).
Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018).
Forbes, A. & Nape, I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci. 1, 011701 (2019).
Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photon. 14, 680–685 (2020).
Fang, Y. et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nat. Photon. 15, 115–120 (2021).
El Ketara, M., Kobayashi, H. & Brasselet, E. Sensitive vectorial optomechanical footprint of light in soft condensed matter. Nat. Photon. 15, 121–124 (2021).
Hawley, R. D., Cork, J., Radwell, N. & Franke-Arnold, S. Passive broadband full Stokes polarimeter using a Fresnel cone. Sci. Rep. 9, 2688 (2019).
Fang, L., Wan, Z., Forbes, A. & Wang, J. Vectorial Doppler metrology. Nat. Commun. 12, 4186 (2021).
Curcio, V., Alemán-Castañeda, L. A., Brown, T. G., Brasselet, S. & Alonso, M. A. Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation. Nat. Commun. 11, 5307 (2020).
Milione, G. et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett. 40, 1980–1983 (2015).
Zhang, J. et al. Fiber vector eigenmode multiplexing based high capacity transmission over 5-km FMF with Kramers-Kronig receiver. J. Lightw. Technol. 39, 4932–4938 (2021).
Zhu, Z. et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun. 12, 1666 (2021).
Zhao, Y. & Wang, J. High-base vector beam encoding/decoding for visible-light communications. Opt. Lett. 40, 4843–4846 (2015).
Radwell, N., Hawley, R., Götte, J. & Franke-Arnold, S. Achromatic vector vortex beams from a glass cone. Nat. Commun. 7, 10564 (2016).
Beckley, A. M., Brown, T. G. & Alonso, M. A. Full Poincaré beams. Opt. Express 18, 10777–10785 (2010).
He, C. et al. Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10, 4264 (2019).
Rosales-Guzmán, C. et al. Polarisation-insensitive generation of complex vector modes from a digital micromirror device. Sci. Rep. 10, 10434 (2020).
Chen, J. et al. Compact vectorial optical field generator based on a 10-megapixel resolution liquid crystal spatial light modulator. Opt. Commun. 495, 127112 (2021).
Wu, H.-J. et al. Vectorial nonlinear optics: type-II second-harmonic generation driven by spin-orbit-coupled fields. Phys. Rev. A 100, 053840 (2019).
Tang, Y. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photon. 14, 658–662 (2020).
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Nassiri, M. G. & Brasselet, E. Multispectral management of the photon orbital angular momentum. Phys. Rev. Lett. 121, 213901 (2018).
Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).
Forbes, A. Structured light from lasers. Laser Photonics Rev. 13, 1900140 (2019).
Beckley, A. M., Brown, T. G. & Alonso, M. A. Full Poincaré beams II: partial polarization. Opt. Express 20, 9357–9362 (2012).
Ma, Z. & Ramachandran, S. Propagation stability in optical fibers: role of path memory and angular momentum. Nanophotonics 10, 209–224 (2020).
Biss, D. P. & Brown, T. Primary aberrations in focused radially polarized vortex beams. Opt. Express 12, 384–393 (2004).
Youngworth, K. S. & Brown, T. G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000).
Mamani, S. et al. Transmission of classically entangled beams through mouse brain tissue. J. Biophotonics 11, e201800096 (2018).
Gianani, I. et al. Transmission of vector vortex beams in dispersive media. Adv. Photon. 2, 036003 (2020).
Biton, N., Kupferman, J. & Arnon, S. OAM light propagation through tissue. Sci. Rep. 11, 2407 (2021).
Suprano, A. et al. Propagation of structured light through tissue-mimicking phantoms. Opt. Express 28, 35427–35437 (2020).
Cox, M. A. et al. Structured light in turbulence. IEEE J. Sel. Topics Quantum Electron. 27, 1–21 (2020).
Gu, Y., Korotkova, O. & Gbur, G. Scintillation of nonuniformly polarized beams in atmospheric turbulence. Opt. Letters 34, 2261–2263 (2009).
Cheng, W., Haus, J. W. & Zhan, Q. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express 17, 17829–17836 (2009).
Cai, Y., Lin, Q., Eyyuboğlu, H. T. & Baykal, Y. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere. Opt. Express 16, 7665–7673 (2008).
Ji-Xiong, P., Tao, W., Hui-Chuan, L. & Cheng-Liang, L. Propagation of cylindrical vector beams in a turbulent atmosphere. Chinese Phys. B 19, 089201 (2010).
Wang, T. & Pu, J. Propagation of non-uniformly polarized beams in a turbulent atmosphere. Opt. Commun. 281, 3617–3622 (2008).
Cox, M. A., Rosales-Guzmán, C., Lavery, M. P. J., Versfeld, D. J. & Forbes, A. On the resilience of scalar and vector vortex modes in turbulence. Opt. Express 24, 18105–18113 (2016).
Lochab, P., Senthilkumaran, P. & Khare, K. Designer vector beams maintaining a robust intensity profile on propagation through turbulence. Phys. Rev. A 98, 023831 (2018).
Hufnagel, F. et al. Investigation of underwater quantum channels in a 30 meter flume tank using structured photons. New J. Phys. 22, 093074 (2020).
Bouchard, F. et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express 26, 22563–22573 (2018).
Ren, Y. et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Sci. Rep. 6, 33306 (2016).
Spreeuw, R. J. C. A classical analogy of entanglement. Found. Phys. 28, 361–374 (1998).
Forbes, A., Aiello, A. & Ndagano, B. Classically entangled light. Prog. Opt. 64, 99–153 (2019).
Kagalwala, K. H., Di Giuseppe, G., Abouraddy, A. F. & Saleh, B. E. Bell’s measure in classical optical coherence. Nat. Photon. 7, 72–78 (2013).
Qian, X.-F. & Eberly, J. Entanglement and classical polarization states. Opt. Lett. 36, 4110–4112 (2011).
Reyes, S. M., Nolan, D. A., Shi, L. & Alfano, R. R. Special classes of optical vector vortex beams are Majorana-like photons. Opt. Commun. 464, 125425 (2020).
McLaren, M., Konrad, T. & Forbes, A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 92, 023833 (2015).
Jiang, M., Luo, S. & Fu, S. Channel-state duality. Phys. Rev. A 87, 022310 (2013).
Konrad, T. et al. Evolution equation for quantum entanglement. Nat. Phys. 4, 99–102 (2008).
Valencia, N. H., Goel, S., McCutcheon, W., Defienne, H. & Malik, M. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020).
Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397–402 (2017).
Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).
Mamani, S. et al. Hybrid generation and analysis of vector vortex beams. Appl. Opt. 56, 2171–2175 (2017).
Vaity, P., Banerji, J. & Singh, R. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys. Lett. A 377, 1154–1156 (2013).
Milione, G., Sztul, H., Nolan, D. & Alfano, R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).
Holleczek, A., Aiello, A., Gabriel, C., Marquardt, C. & Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714–9736 (2011).
He, C., Antonello, J. & Booth, M. J. Vectorial adaptive optics. Preprint at https://arxiv.org/abs/2110.02606 (2021).
Hu, Q., He, C. & Booth, M. J. Arbitrary complex retarders using a sequence of spatial light modulators as the basis for adaptive polarisation compensation. J. Opt. 23, 065602 (2021).
de Oliveira, A., da Silva, N. R., de Araújo, R. M., Ribeiro, P. S. & Walborn, S. Quantum optical description of phase conjugation of vector vortex beams in stimulated parametric down-conversion. Phys. Rev. Appl. 14, 024048 (2020).
Selyem, A., Rosales-Guzmán, C., Croke, S., Forbes, A. & Franke-Arnold, S. Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections. Phys. Rev. A 100, 063842 (2019).
Padgett, M. J. & Courtial, J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 24, 430–432 (1999).
He, C., He, H., Chang, J., Chen, B., Ma, H. & Booth, M. J. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10, 194 (2021).
Acknowledgements
A.F. thanks the NRF-CSIR Rental Pool Programme.
Author information
Authors and Affiliations
Contributions
I.N., W.B., A. Klug, A.M., K.S., C.R.-G. and A. Kritzinger performed the experiments. All the authors contributed to the data analysis and writing of the manuscript. A.F. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Shawn Sederberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1–5, Figs. 1–11 and Sections I–XII.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nape, I., Singh, K., Klug, A. et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photon. 16, 538–546 (2022). https://doi.org/10.1038/s41566-022-01023-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-022-01023-w
This article is cited by
-
Optical skyrmions and other topological quasiparticles of light
Nature Photonics (2024)
-
Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law
Nature Communications (2024)
-
Logical rotation of non-separable states via uniformly self-assembled chiral superstructures
Nature Communications (2024)
-
Determining the optimal communication channels of arbitrary optical systems using integrated photonic processors
Nature Photonics (2024)
-
Nondiffracting supertoroidal pulses and optical “Kármán vortex streets”
Nature Communications (2024)