Abstract
Implementing nonlinear optical components in nanoscale photonic devices is challenged by phase-matching conditions requiring thicknesses in the order of hundreds of wavelengths, and is disadvantaged by the short optical interaction depth of nanometre-scale materials and weak photon–photon interactions. Here we report that ferroelectric NbOI2 nanosheets exhibit giant second-harmonic generation with conversion efficiencies that are orders of magnitude higher than commonly reported nonlinear crystals. The nonlinear response scales with layer thickness and is strain- and electrical-tunable; a record >0.2% absolute SHG conversion efficiency and an effective nonlinear susceptibility \(\chi _{\mathrm{eff}}^{(2)}\) in the order of 10−9 m V−1 are demonstrated at an average pump intensity of 8 kW cm–2. Due to the interplay between anisotropic polarization and excitonic resonance in NbOI2, the spatial profile of the polarized SHG response can be tuned by the excitation wavelength. Our results represent a new paradigm for ultrathin, efficient nonlinear optical components.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding authors on reasonable request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. 2169918-2169919. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
References
Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).
Helk, T. et al. Table-top extreme ultraviolet second harmonic generation. Sci. Adv. 7, eabe2265 (2021).
Shwartz, S. et al. X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014).
Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).
Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014).
Pantazis, P., Maloney, J., Wu, D. & Fraser, S. E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl Acad. Sci. USA 107, 14535–14540 (2010).
Manaka, T., Lim, E., Tamura, R. & Iwamoto, M. Direct imaging of carrier motion in organic transistors by optical second-harmonic generation. Nat. Photon. 1, 581–584 (2007).
Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).
Shen, Y. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).
Hsieh, D. et al. Nonlinear optical probe of tunable surface electrons on a topological insulator. Phys. Rev. Lett. 106, 057401 (2011).
Yakovlev, D. R. et al. Exciton spectroscopy of semiconductors by the method of optical harmonics generation (review). Phys. Solid State 60, 1471–1486 (2018).
Chauleau, J.-Y., Haltz, E., Carrétéro, C., Fusil, S. & Viret, M. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat. Mater. 16, 803–807 (2017).
Lin, K.-Q., Bange, S. & Lupton, J. M. Quantum interference in second-harmonic generation from monolayer WSe2. Nat. Phys. 15, 242–246 (2019).
Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 1–14 (2018).
Schäber, H. & Gerken, R. Beiträge zur chemie der elemente niob und tantal. XXIX. NbOJ3 und NbOJ2. Darstellung, eigenschaften und thermisches verhalten. Z. Anorg. Allg. Chem. 317, 105–112 (1962).
Rijnsdorp, J. & Jellinek, F. The crystal structure of niobium oxide diiodide NbOI2. J. Less-Common Met. 61, 79–82 (1978).
Hillebrecht, H. et al. Structural and scanning microscopy studies of layered compounds MCl3 (M = Mo, Ru, Cr) and MOCl2 (M = V, Nb, Mo, Ru, Os). J. Alloys Compd. 246, 70–79 (1997).
Beck, J. & Kusterer, C. Crystal structure of NbOBr2. Z. Anorg. Allg. Chem. 632, 2193–2194 (2006).
Wu, Y. et al. Data-driven discovery of high performance layered van der Waals piezoelectric NbOI2. Nat. Commun. 13, 1884 (2022).
Pugachev, A. et al. Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation. Phys. Rev. Lett. 108, 247601 (2012).
Clark, D. et al. Near bandgap second-order nonlinear optical characteristics of MoS2 monolayer transferred on transparent substrates. Appl. Phys. Lett. 107, 131113 (2015).
Woodward, R. et al. Characterization of the second-and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2016).
Säynätjoki, A. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun. 8, 1–8 (2017).
Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407 (2015).
Karvonen, L. et al. Investigation of second- and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy. Sci Rep. 5, 10334 (2015).
Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013).
Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).
Bergfeld, S. & Daum, W. Second-harmonic generation in GaAs: experiment versus theoretical predictions of \(\chi _{xyz}^{(2)}\). Phys. Rev. Lett. 90, 036801 (2003).
Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. JOSA B 14, 2268–2294 (1997).
Yariv A. & Yeh P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).
Shen, Y. R. The Principles of Nonlinear Optics (Wiley. 1984).
Peierls R. E. Quantum Theory of Solids (Clarendon, 1996).
Jia, Y., Zhao, M., Gou, G., Zeng, X. C. & Li, J. Niobium oxide dihalides NbOX2: a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity. Nanoscale Horiz. 4, 1113–1123 (2019).
Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).
Hedin, L. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).
Rouxel J. Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures: A Chemical and Physical Synthetic Approach (D. Reidel, 1986).
Fang, Y., Wang, F., Wang, R., Zhai, T. & Huang, F. 2D NbOI2: a chiral semiconductor with highly in‐plane anisotropic electrical and optical properties. Adv. Mater. 33, 2101505 (2021).
Bloembergen, N. & Pershan, P. S. Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622 (1962).
Hopfield, J. J. & Thomas, D. G. Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys. Rev. 132, 563–572 (1963).
Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329 (2013).
Song, Y. et al. Extraordinary second harmonic generation in ReS2 atomic crystals. ACS Photon. 5, 3485–3491 (2018).
Vella, D., Bico, J., Boudaoud, A., Roman, B. & Reis, P. M. The macroscopic delamination of thin films from elastic substrates. Proc. Natl Acad. Sci. USA 106, 10901–10906 (2009).
Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).
Zhang, G. et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photon. 13, 839–842 (2019).
Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photon. 13, 494–499 (2019).
Tran, R. J., Sly, K. L. & Conboy, J. C. Applications of surface second harmonic generation in biological sensing. Ann. Rev. Anal. Chem. 10, 387–414 (2017).
Miller, D. A. B. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).
Gallo, K. & Assanto, G. All-optical diode based on second-harmonic generation in an asymmetric waveguide. JOSA B 16, 267–269 (1999).
Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992).
Bruker APEX3 (Bruker Nano, Inc., 2019).
Sheldrick, G. M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).
Schubert M. Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons Vol. 209 (Springer, 2004).
Losurdo M. & Hingerl K. Ellipsometry at the Nanoscale (Springer, 2013).
Schmidt, D. et al. Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry. Appl. Phys. Lett. 94, 011914 (2009).
Schmidt, D. et al. Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films. Opt. Lett. 34, 992–994 (2009).
Schubert, M. Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. Phys. Rev. B 53, 4265–4274 (1996).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev.B 62, 4927–4944 (2000).
Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).
Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, 233103 (2006).
da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).
Acknowledgements
I.A. acknowledges funding support through a Humboldt Research Fellowship from the Alexander von Humboldt Foundation. K.P.L. acknowledges support from the Singapore National Research Foundation (NRF), Competitive Research Program NRF-CRP22-2019-0006, Prime Minister’s Office, Singapore. T.C.S. acknowledges support from the Ministry of Education (MOE), Singapore, under AcRF Tier 2 grant (MOE2019-T2-1-006). G.E. acknowledges support from MOE, Singapore, under AcRF Tier 3 grant (MOE2018-T3-1-005) and the Singapore NRF for funding the research under medium-sized centre programme. The authors would like to acknowledge the Singapore Synchrotron Light Source (SSLS) for providing the facility necessary for conducting the Mueller matrix ellipsometry measurements. S.A.M. acknowledges LMUexcellent, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2089/1—390776260, the EPSRC Reactive Plasmonics Programme EP/M013812/1, and the Lee Lucas Chair in Physics.
Author information
Authors and Affiliations
Contributions
I.A., S.A.M. and K.P.L. conceived the project and designed the experiments. I.A. performed micromechanical cleavage, two-dimensional dry transfer, device fabrication and material characterization under the supervision of S.A.M. and K.P.L. I.A., B.T., D.G. and R.B. performed all the optical characterizations under the guidance of L.d.S.M., T.C.S., S.A.M., and K.P.L. Y.W. and F.X. performed the calculations and theoretical analysis under supervision of S.Y.Q. I.V. synthesized the NbOI2 bulk crystals under the supervision of G.E. M.Z. performed the ARPES measurements. I.A. wrote the manuscript with input from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Mikhail Glazov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables S1–S3, Supplementary Figures S1–S16, Supplementary Note S1-S7
Supplementary Video 1
Polarization-dependent transmission measurements of NbOI2 nanosheet
Supplementary Data 1
Crystallographic Information File of NbOI2 at 298 K
Supplementary Data 2
Crystallographic Information File of NbOI2 at 100 K
Rights and permissions
About this article
Cite this article
Abdelwahab, I., Tilmann, B., Wu, Y. et al. Giant second-harmonic generation in ferroelectric NbOI2. Nat. Photon. 16, 644–650 (2022). https://doi.org/10.1038/s41566-022-01021-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-022-01021-y
This article is cited by
-
Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes
Nature Nanotechnology (2024)
-
Giant electric field-induced second harmonic generation in polar skyrmions
Nature Communications (2024)
-
Light routing by nanoscale nonlinear interferometry with attosecond control
Nature Nanotechnology (2024)
-
Giant and controllable nonlinear magneto-optical effects in two-dimensional magnets
npj Computational Materials (2024)
-
Dual polarization-enabled ultrafast bulk photovoltaic response in van der Waals heterostructures
Nature Communications (2024)