Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-calibrating programmable photonic integrated circuits

Abstract

Programmable photonic integrated circuits (PICs) are dense assemblies of tunable elements that provide flexible reconfigurability to enable different functions to be selected; however, due to manufacturing variations and thermal gradients that affect the optical phases of the elements, it is difficult to guarantee a stable correspondence between the electrical commands to the chip, and the function that it provides. Here we demonstrate a self-calibrating programmable PIC with full control over its complex impulse response, in the presence of thermal cross-talk between phase-tuning elements. Self-calibration is achieved by: (1) incorporating an optical reference path into the PIC; (2) using the Kramers–Kronig relationship to recover the phase response from amplitude measurements; and (3) applying a fast-converging self-calibration algorithm. We demonstrate dial-up signal processing functions with complex impulse responses using only 25 training iterations. This approach offers stable and accurate control of large-scale PICs, for demanding applications such as communications network reconfiguration, neuromorphic hardware accelerators and quantum computers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual diagram of the self-calibrating integrated broadband PIC.
Fig. 2: Experimental results for on-chip Kramers–Kronig phase recovery.
Fig. 3: The 8-tap signal processing core’s parameter evolution during the self-calibration process.
Fig. 4: Results of self-calibration implementing complex sinc filters.
Fig. 5: Results of self-calibration implementing a Hilbert transformer, half-band lowpass and highpass filters, and a differentiator.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information.

Code availability

The authors declare that the algorithm supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Chrostowski, L. & Hochberg, M. Silicon Photonics Design (Cambridge Univ. Press, 2015).

  2. Lin, Y. et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photon. J. 10, 1400108 (2018).

    Google Scholar 

  3. Bogaerts, W. et al. Integrated Design for Integrated Photonics: from the Physical to the Circuit Level and Back. In Proc. SPIE 8781, Integrated Optics: Physics and Simulations 878102 (SPIE, 2013).

  4. Inniss, D. & Rubenstein, R. Silicon Photonics: Fueling the Next Information Revolution (Elsevier, 2016).

  5. Streshinsky, M. et al. The road to affordable, large-scale silicon photonics. Opt. Photon. News 24, 32–39 (2013).

    Article  ADS  Google Scholar 

  6. Carrol, L. et al. Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).

    Article  Google Scholar 

  7. Capmany, J. & PĂ©rez, D. Programmable Integrated Photonics (Oxford Univ. Press, 2019).

  8. Lyke, J. et al. An introduction to reconfigurable systems. Proc. IEEE 103, 291–317 (2015).

    Article  Google Scholar 

  9. Capmany, J., Gasulla, I. & Pérez, D. The programmable processor. Nat. Photon. 10, 6–8 (2015).

    Article  ADS  Google Scholar 

  10. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  11. Zhuang, L. et al. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    Article  ADS  Google Scholar 

  12. Zheng, D. et al. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Opt. Lett. 44, 2629–2632 (2019).

    Article  ADS  Google Scholar 

  13. Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 406 (2020).

    Article  ADS  Google Scholar 

  14. Pérez, D. & Capmany, J. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica 6, 19–27 (2019).

    Article  ADS  Google Scholar 

  15. Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265–27278 (2018).

    Article  ADS  Google Scholar 

  16. PĂ©rez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    Article  ADS  Google Scholar 

  17. Ribeiro, A. et al. Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016).

    Article  ADS  Google Scholar 

  18. Annoni, A. Unscrambling light—automatically undoing strong mixing between modes. Light: Sci. Appl. 6, e17110 (2017).

    Article  Google Scholar 

  19. Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article  ADS  Google Scholar 

  21. Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    Article  ADS  Google Scholar 

  22. Milanizadeh, M. et al. Cancelling thermal cross-talk effects in photonic integrated circuits. J. Light. Tech. 37, 1325–1332 (2019).

    Article  Google Scholar 

  23. PĂ©rez-LĂłpez, D. et al. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11, 6359 (2020).

    Article  ADS  Google Scholar 

  24. Yegnanarayanan, S. et al. Automated initialization of reconfigurable silicon nitride (SiNx) filters. In Conference on Lasers and Electro-Optics (IEEE, 2018).

  25. Tait, A. N. et al. Continuous calibration of microring weights for analog optical networks. IEEE Photon. Technol. Lett. 28, 887–890 (2016).

    Article  ADS  Google Scholar 

  26. Tait, A. N. et al. Multi-channel control for microring weightbanks. Opt. Express 24, 8895 (2016).

    Article  ADS  Google Scholar 

  27. Jiang, H. et al. Chip-based arbitrary radio-frequency photonic filter with algorithm-driven reconfigurable resolution. Opt. Lett. 43, 415–418 (2018).

    Article  ADS  Google Scholar 

  28. Jayatilleka, H. Automatic configuration and wavelength locking of coupled silicon ring resonators. J. Lightwave Technol. 36, 210–218 (2018).

    Article  ADS  Google Scholar 

  29. Choo, G. Automatic monitor-based tuning of reconfigurable silicon photonic APF-based pole/zero filters. J. Lightwave Technol. 36, 1899–1911 (2018).

    Article  ADS  Google Scholar 

  30. Choo, G. Automatic monitor-based tuning of an RF silicon photonic 1 × 4 asymmetric binary tree true-time-delay beamforming network. J. Lightwave Technol. 36, 5263–5275 (2018).

    Article  ADS  Google Scholar 

  31. Gazman, A. et al. Tapless and topology agnostic calibration solution for silicon photonic switches. Opt. Express 26, 347241 (2018).

    Article  Google Scholar 

  32. Cheng, Q. et al. First demonstration of automated control and assessment of a dynamically reconfigured monolithic 8 × 8 wavelength-and-space switch. IEEE J. Opt. Commun. Netw. 7, 388–395 (2015).

    Article  Google Scholar 

  33. Carolan, J. et al. Scalable feedback control of single photon sources for photonic quantum technologies. Optica 6, 335–341 (2019).

    Article  ADS  Google Scholar 

  34. Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).

    Article  ADS  Google Scholar 

  35. Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).

    Article  ADS  Google Scholar 

  36. Hayes, M., Lim, J. S. & Oppenheim, A. V. Signal reconstruction from phase or magnitude. IEEE Trans. Acoust. Speech Signal Process. 28, 672–680 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ozcan, A., Digonnet, M. J. F. & Kino, G. S. Minimum-phase-function-based processing in frequency-domain optical coherence tomography systems. J. Opt. Soc. Am. A 23, 1669–1677 (2006).

    Article  ADS  Google Scholar 

  38. Ozcan, A., Digonnet, M. J. F. & Kino, G. S. Characterization of Fiber Bragg gratings using spectral interferometry based on minimum-phase functions. J. Lightwave Technol. 24, 1739 (2006).

    Article  ADS  Google Scholar 

  39. Mecozzi, A., Antonelli, C. & Shtaif, M. Kramers–Kronig coherent receiver. Optica 3, 1220–1227 (2016).

    Article  ADS  Google Scholar 

  40. Halir, R. et al. Characterization of integrated photonic devices with minimum phase technique. Opt. Express 17, 8349–8361 (2009).

    Article  ADS  Google Scholar 

  41. Li, Z. et al. SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation. J. Lightwave Technol. 35, 1887–1893 (2017).

    Article  ADS  Google Scholar 

  42. Xie, Y., Zhuang, L. & Lowery, A. J. Picosecond optical pulse processing using a terahertz-bandwidth reconfigurable photonic integrated circuit. Nanophotonics 7, 837–852 (2018).

    Article  Google Scholar 

  43. Zhuang, L. et al. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Opt. Express 20, 26499–26510 (2012).

    Article  ADS  Google Scholar 

  44. Guo, Y., Jafari, Z., Agarwal, A. M., Kimerling, L. C., Li, G., Michel, J. & Zhang, L. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt. Lett. 41, 4939–4942 (2016).

    Article  ADS  Google Scholar 

  45. Roeloffzen, C. G. H. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

    Article  ADS  Google Scholar 

  46. Wörhoff, K., Heideman, R. G., Leinse, A. & Hoekman, M. Triplex: a versatile dielectric photonic platform. Adv. Opt. Technol. 4, 189–207. (2015).

    ADS  Google Scholar 

  47. Qiao, P., Cook, K. T., Li, K. & Chang-Hasnain, C. J. Wavelength-swept VCSELs. In IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).

  48. Mauthe, S. et al. High-speed III–V nanowire photodetector monolithically integrated on Si. Nat. Commun. 11, 4565 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Zhuang, Y. Xie and S. Schoenhardt for the layout and tests of the FIR chip in prior projects. We thank B. Corcoran for the discussion of experiments. We thank A. Linzner for the fabrication of metal chip holders. We thank LioniX International, the Netherlands, for fabricating the FIR chip. This work was supported by the Australian Research Council Discovery Projects Program (grant no. DP190101576, DP190102773).

Author information

Authors and Affiliations

Authors

Contributions

X.X., A.J.L. and A.B. conceived the idea and designed the project. X.X. performed the numerical simulations and experiments. G.R., A.B. and T.F. prepared experimental hardware. X.X., A.J.L., A.B., G.R., X.L. and A.M. contributed to the development of the experiment and to the data analysis. X.X. and A.J.L. wrote the manuscript with inputs from all other authors. A.J.L. and A.B. supervised the research.

Corresponding author

Correspondence to Xingyuan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Daniel Perez-Lopez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ren, G., Feleppa, T. et al. Self-calibrating programmable photonic integrated circuits. Nat. Photon. 16, 595–602 (2022). https://doi.org/10.1038/s41566-022-01020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01020-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing