Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix


Spintronic devices, by harnessing the spin degree of freedom, are expected to outperform charge-based devices in terms of energy efficiency and speed of operation. The use of an electric field to control spin at room temperature has been pursued for decades. A major hurdle that has contributed to the slow progress in this regard is the dilemma between effective control and strong spin relaxation. For example, in a Rashba/Dresselhaus material with strong spin–orbit coupling, although the internal magnetic field could be substantial enough to effectively control spin precession, often, the spin-relaxation time becomes extremely short as a consequence of Dyakonov–Perel scattering. To address this, a persistent spin helix has been proposed in systems with SU(2) symmetry. Here we show the discovery of the persistent spin helix in an organic–inorganic hybrid ferroelectric halide perovskite whose layered nature makes it intrinsically like a quantum well. We demonstrate that the spin-polarized band structure is switchable at room temperature via an intrinsic ferroelectric field. We reveal valley–spin coupling through a circular photogalvanic effect in single-crystalline bulk crystals. The favoured short spin helix wavelength (three orders of magnitude shorter than in III–V materials), room-temperature operation and non-volatility make the hybrid perovskite an ideal platform for understanding symmetry-tuned spin dynamics, towards designing practical spintronic materials and devices that can resolve the control-relaxation dilemma.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The proposal of natural multilayer quantum-well-like bulk crystals with persistent spin helix.
Fig. 2: Theoretically calculated spin and effective magnetic field structures of (4,4-DFPD)2PbI4 predicted to host the persistent spin helix.
Fig. 3: Structural and optical properties of (4,4-DFPD)2PbI4.
Fig. 4: Light helicity-dependent photocurrent.
Fig. 5: Room-temperature ferroelectrically switchable CPGE.

Data availability

The data supporting the findings of this study are available within the paper.

Code availability

Codes are available upon reasonable request from the corresponding authors.


  1. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  ADS  Google Scholar 

  2. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  ADS  Google Scholar 

  3. Wang, K. L. et al. Electric-field control of spin-orbit interaction for low-power spintronics. Proc. IEEE 104, 1974–2008 (2016).

    Article  Google Scholar 

  4. Jiang, M., Asahara, H., Sato, S., Ohya, S. & Tanaka, M. Suppression of the field-like torque for efficient magnetization switching in a spin–orbit ferromagnet. Nat. Electron. 3, 751–756 (2020).

    Article  Google Scholar 

  5. Huai, Y. Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18, 33–40 (2008).

    Google Scholar 

  6. Kawahara, T., Ito, K., Takemura, R. & Ohno, H. Spin-transfer torque RAM technology: review and prospect. Microelectron. Reliab. 52, 613–627 (2012).

    Article  Google Scholar 

  7. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article  ADS  Google Scholar 

  8. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187 (2014).

    Article  ADS  Google Scholar 

  9. Jungfleisch, M. B., Zhang, W. & Hoffmann, A. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382, 865–871 (2018).

    Article  ADS  Google Scholar 

  10. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).

    Article  ADS  Google Scholar 

  11. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

    Article  ADS  Google Scholar 

  12. Datta, S. & Das, B. Electronic analog of the electro‐optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  13. Winkler, R., Papadakis, S., De Poortere, E. & Shayegan, M. Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems (Springer, 2003).

  14. Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  15. Bychkov, Y. & Rashba, E. Properties of a 2D electron gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984).

    Google Scholar 

  16. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. & Duine, R. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  ADS  Google Scholar 

  17. Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

    Article  ADS  Google Scholar 

  18. Lee, H., Im, J. & Jin, H. Emergence of the giant out-of-plane Rashba effect and tunable nanoscale persistent spin helix in ferroelectric SnTe thin films. Appl. Phys. Lett. 116, 022411 (2020).

    Article  ADS  Google Scholar 

  19. Autieri, C., Barone, P., Sławińska, J. & Picozzi, S. Persistent spin helix in Rashba–Dresselhaus ferroelectric CsBiNb2O7. Phys. Rev. Mater. 3, 084416 (2019).

    Article  Google Scholar 

  20. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    Article  ADS  Google Scholar 

  21. Walser, M., Reichl, C., Wegscheider, W. & Salis, G. Direct mapping of the formation of a persistent spin helix. Nat. Phys. 8, 757–762 (2012).

    Article  Google Scholar 

  22. Ohno, M. & Yoh, K. Vanishing of inhomogeneous spin relaxation in InAs-based field-effect transistor structures. Phys. Rev. B 75, 241308 (2007).

    Article  ADS  Google Scholar 

  23. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  ADS  Google Scholar 

  24. Zhang, H.-Y. et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).

    Article  Google Scholar 

  25. Zhai, Y. et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  ADS  Google Scholar 

  26. Hong, X., Ishihara, T. & Nurmikko, A. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992).

    Article  ADS  Google Scholar 

  27. Wang, S., Huang, M., Wu, Y. N. & Chen, S. Absolute volume deformation potentials of inorganic ABX3 halide perovskites: the chemical trends. Adv. Theory Simulations 4, 2100060 (2021).

    Article  Google Scholar 

  28. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  ADS  Google Scholar 

  29. Dar, M. I. et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv. 2, e1601156 (2016).

    Article  ADS  Google Scholar 

  30. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Article  ADS  Google Scholar 

  31. Chen, Z. et al. Remote phononic effects in epitaxial Ruddlesden–Popper halide perovskites. J. Phys. Chem. Lett. 9, 6676–6682 (2018).

    Article  Google Scholar 

  32. Guo, Z., Wu, X., Zhu, T., Zhu, X. & Huang, L. Electron-phonon scattering in atomically thin 2D perovskites. ACS Nano 10, 9992–9998 (2016).

    Article  Google Scholar 

  33. Chen, T. et al. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites. Proc. Natl Acad. Sci. USA 114, 7519–7524 (2017).

    Article  ADS  Google Scholar 

  34. Booker, E. P. et al. Formation of long-lived color centers for broadband visible light emission in low-dimensional layered perovskites. J. Am. Chem. Soc. 139, 18632–18639 (2017).

    Article  Google Scholar 

  35. Fu, Y. et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. 140, 15675–15683 (2018).

    Article  Google Scholar 

  36. Harris, D. C. & Bertolucci, M. D. Symmetry and Spectroscopy: an Introduction to Vibrational and Electronic Spectroscopy (Courier Corporation, 1989).

  37. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935 (2003).

    Article  ADS  Google Scholar 

  38. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  ADS  Google Scholar 

  39. Gibson, A. & Kimmitt, M. Photon drag detection. Infrared Millimeter Waves 3, 181–217 (1980).

    Google Scholar 

  40. Sturman, B. I. & Fridkin, V. M. Photovoltaic and Photo-Refractive Effects in Noncentrosymmetric Materials (Routledge, 2021).

  41. Belinicher, V., Ivchenko, E. & Sturman, B. Kinetic theory of the displacement photovoltaic effect in piezoelectrics. Zh. Eksp. Teor. Fiz. 83, 649–661 (1982).

    Google Scholar 

  42. Quereda, J. et al. Symmetry regimes for circular photocurrents in monolayer MoSe2. Nat. Commun. 9, 3346 (2018).

    Article  ADS  Google Scholar 

  43. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article  ADS  Google Scholar 

  44. Jin, L., Li, F. & Zhang, S. in Progress in Advanced Dielectrics (ed Jin, L.) Ch. 2, 21–104 (World Scientific, 2020).

  45. Hong, C. et al. Enhanced piezoelectric and dielectric properties of Pb (Yb1/2Nb1/2)O3-Pb (Mg1/3Nb2/3)O3-PbTiO3 crystals by combining alternating and direct current poling. J. Appl. Phys. 129, 124101 (2021).

    Article  ADS  Google Scholar 

  46. Sundararaman, R. et al. JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

    Article  ADS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  48. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  49. Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  ADS  Google Scholar 

  50. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    Article  ADS  Google Scholar 

Download references


This work is supported by the US ARO under grant no. W911NF-21-1-0013 (J.S. and R.S.), the US AFOSR under award no. FA9550-18-1-0116 (J.S.), the US AFOSR under award no. FA9550-YR-1-XYZQ (Y.P.), the New York State’s Empire State Development’s Division of Science, Technology and Innovation through Focus Center contract no. C180117 (L.Z., J.S., Z.L. and T.M.L.) and the US National Science Foundation under award nos. 1706815 (J.S.), 2031692 (J.S.) and 1916652 (R.S. and J.S.).

Author information

Authors and Affiliations



J.S., R.S., Y.P. and L.Z. conceived and developed the idea. L.Z., Y.H., J.J. and J.S. planned the experiments. L.Z. and J.J. prepared samples and devices. L.Z. and J.J. performed optical and PL experiments. L.Z. performed ferroelectric polarization tests and SEM studies. L.Z. and J.J. performed CPGE measurements. C. Multunas, M.C., R.S., Y.P., C. Ming and Y.-Y.S. performed DFT calculations. Y.H. performed XRD and Z.L. performed EBSD. L.Z. processed the raw data. L.Z., C. Multunas, Y.P., R.S. and J.S. analysed and interpreted the results. L.Z. prepared the initial manuscript draft and J.S. revised it. All authors were involved in the discussion of data analysis and the writing of the manuscript. J.S., R.S. and Y.P. supervised the project.

Corresponding authors

Correspondence to Yuan Ping, Ravishankar Sundararaman or Jian Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jean Luc Pelouard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Discussions 1–3 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, J., Multunas, C. et al. Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photon. 16, 529–537 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing