Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanokelvin-resolution thermometry with a photonic microscale sensor at room temperature


Ultrahigh-resolution thermometry is critical for future advances in bio-calorimetry1,2, sensitive bolometry for sensing3 and imaging4, as well as for probing dissipation in a range of electronic5, optoelectronic6 and quantum devices7. In spite of recent advances in the field8,9,10,11, achieving high-resolution measurements from microscale devices at room temperature remains an outstanding challenge. Here, we present a band-edge microthermometer that achieves this goal by relying on the strong, temperature-dependent optical properties of GaAs at its absorption edge12,13,14. Specifically, using a suspended asymmetric Fabry–Pérot resonator and a wavelength-stabilized probe laser we demonstrate a thermoreflectance coefficient of >30 K−1, enabling measurements with a thermometry noise floor of ~60 nK Hz−1/2 and a temperature resolution of <100 nK in a bandwidth of 0.1 Hz. The advances presented here are expected to enable a broad range of studies and applications in calorimetry and bolometry where miniaturized high-resolution thermometers are required.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device structure and experimental setup.
Fig. 2: Thermoreflectance coefficient of the BET.
Fig. 3: Characterization of thermometry resolution.
Fig. 4: Noise floor of the BET.

Data availability

Source data are provided with this paper.

Code availability

The custom scattering-matrix code used in this paper is available from the corresponding authors upon reasonable request.


  1. Hong, S. et al. Sub-nanowatt microfluidic single-cell calorimetry. Nat. Commun. 11, 2982 (2020).

    ADS  Article  Google Scholar 

  2. Hur, S., Mittapally, R., Yadlapalli, S., Reddy, P. & Meyhofer, E. Sub-nanowatt resolution direct calorimetry for probing real-time metabolic activity of individual C. elegans worms. Nat. Commun. 11, 2983 (2020).

    ADS  Article  Google Scholar 

  3. Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    ADS  Article  Google Scholar 

  4. Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Article  Google Scholar 

  5. Menges, F. et al. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 7, 10874 (2016).

    ADS  Article  Google Scholar 

  6. Luo, K., Herrick, R., Majumdar, A. & Petroff, P. Scanning thermal microscopy of a vertical-cavity surface-emitting laser. Appl. Phys. Lett. 71, 1604–1606 (1997).

    ADS  Article  Google Scholar 

  7. Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016).

    ADS  Article  Google Scholar 

  8. Weng, W. et al. Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit. Phys. Rev. Lett. 112, 160801 (2014).

    ADS  Article  Google Scholar 

  9. Strekalov, D., Thompson, R., Baumgartel, L., Grudinin, I. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495–14501 (2011).

    ADS  Article  Google Scholar 

  10. Tan, S., Wang, S., Saraf, S. & Lipa, J. A. Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity. Opt. Express 25, 3578–3593 (2017).

    ADS  Article  Google Scholar 

  11. Loh, W., Yegnanarayanan, S., O’Donnell, F. & Juodawlkis, P. W. Ultra-narrow linewidth Brillouin laser with nanokelvin temperature self-referencing. Optica 6, 152–159 (2019).

    ADS  Article  Google Scholar 

  12. Wei, J., Murray, J. M., Barnes, J., Gonzalez, L. P. & Guha, S. Determination of the temperature dependence of the band gap energy of semiconductors from transmission spectra. J. Electron. Mater. 41, 2857–2866 (2012).

    ADS  Article  Google Scholar 

  13. Johnson, S. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995).

    ADS  Article  Google Scholar 

  14. Marple, D. Refractive index of GaAs. J. Appl. Phys. 35, 1241–1242 (1964).

    ADS  Article  Google Scholar 

  15. Vendelbo, S. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014).

    ADS  Article  Google Scholar 

  16. Reihani, A., Lim, J. W., Fork, D. K., Meyhofer, E. & Reddy, P. Microwatt-resolution calorimeter for studying the reaction thermodynamics of nanomaterials at high temperature and pressure. ACS Sens. 6, 387–398 (2021).

    Article  Google Scholar 

  17. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    ADS  Article  Google Scholar 

  18. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    ADS  Article  Google Scholar 

  19. Sadat, S., Meyhofer, E. & Reddy, P. High resolution resistive thermometry for micro/nanoscale measurements. Rev. Sci. Instrum. 83, 084902 (2012).

    ADS  Article  Google Scholar 

  20. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    ADS  Article  Google Scholar 

  21. Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).

    ADS  Article  Google Scholar 

  22. Jarzyna, M. & Zwierz, M. Quantum interferometric measurements of temperature. Phys. Rev. A 92, 032112 (2015).

    ADS  Article  Google Scholar 

  23. Luerssen, D., Hudgings, J. A., Mayer, P. M. & Ram, R. J. Nanoscale thermoreflectance with 10mK temperature resolution using stochastic resonance. In Proc. Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium 253–258 (IEEE, 2005).

  24. Cahill, D. G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002).

    Article  Google Scholar 

  25. Whittaker, D. & Culshaw, I. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60, 2610–2618 (1999).

    ADS  Article  Google Scholar 

  26. Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS  Article  Google Scholar 

  27. Lautenschlager, P., Garriga, M., Logothetidis, S. & Cardona, M. Interband critical points of GaAs and their temperature dependence. Phys. Rev. B 35, 9174–9189 (1987).

    ADS  Article  Google Scholar 

  28. Schaefer, S., Gao, S., Webster, P., Kosireddy, R. & Johnson, S. Absorption edge characteristics of GaAs, GaSb, InAs, and InSb. J. Appl. Phys. 127, 165705 (2020).

    ADS  Article  Google Scholar 

  29. Åström, K. J. & Murray, R. M. Feedback Systems (Princeton Univ. Press, 2010).

  30. Qian, W. et al. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 36, 1548–1550 (2011).

    ADS  Article  Google Scholar 

  31. Festa, C. Thermostat with ±0.5 μK monitoring sensitivity. J. Phys. E 16, 683–686 (1983).

    ADS  Article  Google Scholar 

  32. David, R. & Hunter, I. W. A liquid-in-glass thermometer read by an interferometer. Sens. Actuators A 121, 31–34 (2005).

    Article  Google Scholar 

  33. Benson, B. B. & Krause, D. Jr Use of the quartz crystal thermometer for absolute temperature measurements. Rev. Sci. Instrum. 45, 1499–1501 (1974).

    ADS  Article  Google Scholar 

  34. Sadat, S. et al. Room temperature picowatt-resolution calorimetry. Appl. Phys. Lett. 99, 043106 (2011).

    ADS  Article  Google Scholar 

Download references


We acknowledge support from DOE-BES through a grant from the Scanning Probe Microscopy Division under award No. DESC0004871 (Experiments and Analysis) and support from the Army Research Office under award No. W911NF-19-1-0279 (fabrication of devices).

Author information

Authors and Affiliations



A.R., E.M. and P.R. conceived the work. A.R. fabricated the devices and performed the experiments and calculations under the supervision of E.M. and P.R. The manuscript was written by A.R., E.M. and P.R.

Corresponding authors

Correspondence to Edgar Meyhofer or Pramod Reddy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sheng Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Sections 1–8.

Source data

Source Data Fig. 2

Experimental and modelling data for Fig. 2a–d in an Excel sheet and Matlab codes for generating Fig. 2a–d from the data.

Source Data Fig. 3

Experimental data for Fig. 3a–d in an Excel sheet and Matlab codes to generate the figures from the data.

Source Data Fig. 4

Experimental data and estimated noise corresponding to Fig. 4a is provided in an Excel sheet along with Matlab code to generate Fig. 4a.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reihani, A., Meyhofer, E. & Reddy, P. Nanokelvin-resolution thermometry with a photonic microscale sensor at room temperature. Nat. Photon. 16, 422–427 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing