Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre

Abstract

High-power laser delivery with near-diffraction-limited beam quality is typically limited to tens of metres distances by nonlinearity-induced spectral broadening inside the glass core of delivery fibres. Anti-resonant hollow-core fibres offer not only orders-of-magnitude lower nonlinearity but also loss and modal purity comparable to conventional beam-delivery fibres. Using a single-mode hollow-core nested anti-resonant nodeless fibre with 0.74 dB km−1 loss, we demonstrate the delivery of 1 kW of near-diffraction-limited continuous-wave laser light over a 1 km distance, with a total throughput efficiency of ~80%. From simulations, a further improvement in transmitted power or length of more than one order of magnitude should be possible in such air-filled fibres, and considerably more if the core is evacuated. This paves the way to multi-kilometre, kilowatt-scale power delivery that is potentially useful not only for future manufacturing and subsurface drilling but also for new scientific possibilities in sensing, particle acceleration and gravitational wave detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the 1-km-long NANF.
Fig. 2: Demonstration of 1 kW power delivery over the 1 km NANF.
Fig. 3: Power-delivery performance of the 1 km NANF.
Fig. 4: Scalability of near-diffraction-limited CW power delivery in optical fibres at 1 µm, limited by SRS.

Similar content being viewed by others

Data availability

The data included in this paper can be accessed at https://doi.org/10.5258/SOTON/D2154.

Code availability

Additional information on the numerical modelling method and code may be obtained from the corresponding authors upon reasonable request.

References

  1. Zaeh, M. F., Moesl, J., Musiol, J. & Oefele, F. Material processing with remote technology revolution or evolution? Phys. Procedia 5, 19–33 (2010).

    Article  ADS  Google Scholar 

  2. Beyer, E., Mahrle, A., Lütke, M., Standfuss, J. & Brückner, F. Innovations in high power fiber laser applications. In Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications (eds Honea, E. C. & Hendow, S. T.) 823717 (SPIE, 2012).

  3. Zervas, M. N. & Codemard, C. A. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).

    Article  ADS  Google Scholar 

  4. Kraetzsch, M. et al. Laser beam welding with high-frequency beam oscillation: welding of dissimilar materials with brilliant fiber lasers. In International Congress on Applications of Lasers & Electro-Optics 169–178 (Laser Institute of America, 2011).

  5. Schmitt, F. D. et al. Laser beam micro welding with high brilliant fiber lasers. J. Laser Micro/Nanoeng. 5, 197–203 (2010).

    Article  Google Scholar 

  6. Kratky, A., Schuöcker, D. & Liedl, G. Processing with kW fibre lasers: advantages and limits. In Proc. SPIE 7131, XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers (eds Vilar, R. et al.) 71311X (SPIE, 2009).

  7. Stiles, E. New developments in IPG fiber laser technology. In 5th International Workshop on Fiber Lasers 4–6 (Fraunhofer IWS, 2009).

  8. Agrawal, G. P. Nonlinear Fiber Optics 3rd edn (Academic, 2001).

  9. Dawson, J. W. et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 16, 13240–13266 (2008).

    Article  ADS  Google Scholar 

  10. Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861–867 (2013).

    Article  ADS  Google Scholar 

  11. Knight, J. C., Birks, T. A., Cregan, R. F., Russell, P. S. J. & Sandro, J.-P. D. Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998).

    Article  ADS  Google Scholar 

  12. Liu, C.-H. et al. Effectively single-mode chirally-coupled core fiber. In Advanced Solid-State Photonics ME2 (Optical Society of America, 2007).

  13. Limpert, J. et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light Sci. Appl. 1, e8 (2012).

    Article  Google Scholar 

  14. Röhrer, C., Codemard, C. A., Kleem, G., Graf, T. & Ahmed, M. A. Preserving nearly diffraction-limited beam quality over several hundred meters of transmission through highly multimode fibers. J. Lightwave Technol. 37, 4260–4267 (2019).

    Article  ADS  Google Scholar 

  15. Shima, K. et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems (eds Hartl, I. & Carter, A. L.) 105120C (SPIE, 2018).

  16. Matsui, T. et al. Effective area enlarged photonic crystal fiber with quasi-uniform air-hole structure for high power transmission. IEICE Trans. Commun. E103.B, 415–421 (2020).

    Article  ADS  Google Scholar 

  17. Okuda, T., Fujiya, Y., Goya, S. & Inoue, A. Beam transmission technology by photonic crystal fiber to realizes high-precision and high-efficiency laser processing technology. Mitsubishi Heavy Ind. Tech. Rev. 57, 1–5 (2020).

  18. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  19. Wang, Y. Y., Wheeler, N. V., Couny, F., Roberts, P. J. & Benabid, F. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011).

    Article  ADS  Google Scholar 

  20. Belardi, W. & Knight, J. C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 39, 1853–1856 (2014).

    Article  ADS  Google Scholar 

  21. Poletti, F. Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014).

    Article  ADS  Google Scholar 

  22. Debord, B. et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica 4, 209–217 (2017).

    Article  ADS  Google Scholar 

  23. Gao, S.-f et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nat. Commun. 9, 2828 (2018).

    Article  ADS  Google Scholar 

  24. Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 11, 6030 (2020).

    Article  ADS  Google Scholar 

  25. Gao, S.-f, Wang, Y.-y, Ding, W., Hong, Y.-f & Wang, P. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach. Laser Photon. Rev. 14, 1900241 (2020).

    Article  ADS  Google Scholar 

  26. Jasion, G. T. et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands. In Optical Fiber Communication Conference Postdeadline Papers 2020 paper Th4B.4 (Optical Society of America, 2020).

  27. Sakr, H. et al. Hollow core NANFs with five nested tubes and record low loss at 850, 1060, 1300 and 1625nm. In Optical Fiber Communication Conference (OFC) 2021 (eds Dong, P. et al.) paper F3A.4 (Optical Society of America, 2021).

  28. Debord, B. et al. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express 22, 10735–10746 (2014).

    Article  ADS  Google Scholar 

  29. Michieletto, M. et al. Hollow-core fibers for high power pulse delivery. Opt. Express 24, 7103–7119 (2016).

    Article  ADS  Google Scholar 

  30. Hädrich, S. et al. Scalability of components for kW-level average power few-cycle lasers. Appl. Opt. 55, 1636–1640 (2016).

    Article  ADS  Google Scholar 

  31. Zhu, X. et al. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber. Opt. Express 29, 1492–1501 (2021).

    Article  ADS  Google Scholar 

  32. Palma-Vega, G. et al. High average power transmission through hollow-core fibers. In Laser Congress 2018 (ASSL) paper ATh1A.7 (Optical Society of America, 2018).

  33. Jasion, G. T. et al. Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. Opt. Express 27, 20567–20582 (2019).

    Article  ADS  Google Scholar 

  34. Nespola, A. et al. Ultra-long-haul WDM transmission in a reduced inter-modal interference NANF hollow-core fiber. In Optical Fiber Communication Conference (OFC) 2021 (eds. Dong, P. et al.) paper F3B.5 (Optical Society of America, 2021).

  35. Rikimi, S. et al. Pressure in as-drawn hollow core fibers. In OSA Advanced Photonics Congress (AP) 2020 (eds Caspani, L. et al.) paper SoW1H.4 (Optical Society of America, 2020).

  36. Abt, F., Heß, A. & Dausinger, F. Focusing of high power single mode laser beams. In International Congress on Applications of Lasers & Electro-Optics 202 (Laser Institute of America, 2007).

  37. Fokoua, E. N., Slavik, R., Richardson, D. J. & Poletti, F. Limits of coupling efficiency into hollow-core antiresonant fibers. In Conference on Lasers and Electro-Optics (eds Kang, J. et al.) paper STu1Q.4 (Optical Society of America, 2021).

  38. Zervas, M. N. Bright future for fibre lasers? Laser Systems Europe https://www.lasersystemseurope.com/analysis-opinion/bright-future-fibre-lasers (2019).

  39. Hilton, P. A. & Khan, A. Underwater cutting using a 1 μm laser source. J. Laser Appl. 27, 032013 (2015).

    Article  ADS  Google Scholar 

  40. Batarseh, S., Gahan, B. C., Graves, R. M. & Parker, R. A. Well perforation using high-power lasers. In SPE Annual Technical Conference and Exhibition SPE-84418-MS (Society of Petroleum Engineers, 2003).

  41. Zediker, M. High power fiber lasers in geothermal, oil and gas. In Proc. SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications (Ed. Ramachandran, S.) 89610D (SPIE, 2014).

  42. Benabid, F., Knight, J. C. & Russell, P. S. J. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10, 1195–1203 (2002).

    Article  ADS  Google Scholar 

  43. Bykov, D. S., Schmidt, O. A., Euser, T. G. & Russell, P. S. J. Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461–465 (2015).

    Article  ADS  Google Scholar 

  44. Ashkin, A. The pressure of laser light. Sci. Am. 226, 62–71 (1972).

    Article  Google Scholar 

  45. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  46. Mousavi, S. A. et al. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. Opt. Express 26, 8866–8882 (2018).

    Article  ADS  Google Scholar 

  47. Luan, J., Russell, P. S. J. & Novoa, D. Efficient self-compression of ultrashort near-UV pulses in air-filled hollow-core photonic crystal fibers. Opt. Express 29, 13787–13793 (2021).

    Article  ADS  Google Scholar 

  48. Marcuse, D. Derivation of Coupled Power Equations. Bell Syst. Tech. J. 51, 229–237 (1972).

    Article  Google Scholar 

  49. Goodman, J. W. Statistical Optics (Wiley, 2000).

  50. Mussot, A. et al. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt. Express 12, 2838–2843 (2004).

    Article  ADS  Google Scholar 

  51. Cavalcanti, S. B., Agrawal, G. P. & Yu, M. Noise amplification in dispersive nonlinear media. Phys. Rev. A 51, 4086–4092 (1995).

    Article  ADS  Google Scholar 

  52. Frosz, M. H., Bang, O. & Bjarklev, A. Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the European Research Council (ERC) (grant agreement number 682724, ‘Lightpipe’), the UK Engineering and Physical Sciences Research Council (EPSRC) (programme grant EP/P030181/1, ‘Airguide Photonics’) and Saudi Aramco. The Royal Academy of Engineering is acknowledged for funding of Research Fellowships RF1516\15\46 (G.T.J.) and RF\201819\18\200 (E.N.F.). SPI is acknowledged for advice, useful discussions and for providing a laser source for initial tests. C. R. Smith and H. Kim are acknowledged for early contributions on the coupling of high-power laser beams into hollow-core fibres and for assistance with the splicing of NANF fibres, respectively. Y. Chen is acknowledged for advice and assistance with fibre fabrication.

Author information

Authors and Affiliations

Authors

Contributions

H.C.H.M., V.Z. and L.X. performed the power delivery, loss and M2 measurements. S.A.M. performed the simulations. H.S., T.D.B. and J.R.H. fabricated the fibres. G.T.J., E.N.F. and F.P. designed the fibres. A.T. produced the free-standing NANF coils. H.C.H.M., S.A.M., D.J.R. and F.P. wrote the manuscript. S.-U.A., D.J.R. and F.P. provided overall technical leadership across all aspects of the research.

Corresponding authors

Correspondence to L. Xu or F. Poletti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Bill O’Neill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4 and Figs. 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulvad, H.C.H., Abokhamis Mousavi, S., Zuba, V. et al. Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre. Nat. Photon. 16, 448–453 (2022). https://doi.org/10.1038/s41566-022-01000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01000-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing