Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles


The interaction between structured light beams possessing optical angular momentum and small particles promises new opportunities for optical manipulation, such as the generation of light-induced torque and rotation of objects. However, so far, studies have largely centred on nanoscale particles. Here we report the observation and measurement of the transfer of transverse angular momentum to birefringent spherical vaterite particles several wavelengths in size. We outline the physics behind the beam used to control the particles, perform quantitative measurements of the transverse spin angular momentum transfer and demonstrate the generation of fluid flow around multiple rotation axes. The findings show that light can impart controllable rotational degrees of freedom to microparticles. In the future, the approach may prove useful for investigating the dynamics of complex fluids in three dimensions, studying the shear force on cell monolayers or cooling an optically trapped particle to the quantum ground state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of a particle undergoing transverse rotation in a structured beam.
Fig. 2: Transverse angular momentum transfer to a vaterite particle and the field that was simulated to achieve this.
Fig. 3: Comparison of spin angular momentum determined from simulation and experiment.
Fig. 4: Small particles driven around a larger vaterite particle undergoing transverse spinning.

Data availability

All practically distributable raw and processed data (such as images, signal traces and tracked positions) are available from the corresponding authors upon reasonable request.


  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  2. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  3. Friese, M. E. J., Enger, J., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A 54, 1593–1596 (1996).

    Article  ADS  Google Scholar 

  4. Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997).

    Article  Google Scholar 

  5. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    Article  Google Scholar 

  6. Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36, 2107–2113 (1997).

    Article  ADS  Google Scholar 

  7. Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).

    Article  ADS  Google Scholar 

  8. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  9. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  Google Scholar 

  10. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  11. La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    Article  Google Scholar 

  12. Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

  13. Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).

  14. Zhang, S. et al. Ultrasensitive rotating photonic probes for complex biological systems. Optica 4, 1103–1108 (2017).

    Article  ADS  Google Scholar 

  15. Moothoo, D. N. et al. Beth’s experiment using optical tweezers. Am. J. Phys. 69, 271–276 (2001).

    Article  ADS  Google Scholar 

  16. Ha, S. et al. Single-crystal rutile TiO2 nanocylinders are highly effective transducers of optical force and torque. ACS Photon. 6, 1255–1265 (2019).

    Article  Google Scholar 

  17. O’Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    Article  ADS  Google Scholar 

  18. Simpson, S. H. & Hanna, S. Optical angular momentum transfer by Laguerre-Gaussian beams. J. Opt. Soc. Am. A 26, 625–638 (2009).

    Article  ADS  Google Scholar 

  19. Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    Article  ADS  Google Scholar 

  21. Neugebauer, M., Bauer, T., Aiello, A. & Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 114, 063901 (2015).

  22. Parkin, S. et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt. Express 17, 21944–21955 (2009).

    Article  ADS  Google Scholar 

  23. Cölfen, H. & Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).

  24. Vikulina, A. et al. Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: from submicron to giant. Mater. Des. 197, 109220 (2021).

    Article  Google Scholar 

  25. Vogel, R. et al. Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25, 11672–11679 (2009).

    Article  Google Scholar 

  26. Svenskaya, Y. I. et al. Key parameters for size- and shape-controlled synthesis of vaterite particles. Cryst. Growth Des. 18, 331–337 (2017).

    Article  Google Scholar 

  27. Nieminen, T. A., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A 10, 115005 (2008).

    Article  ADS  Google Scholar 

  28. Wu, P., Huang, R., Tischer, C., Jonas, A. & Florin, E.-L. Direct measurement of the nonconservative force field generated by optical tweezers. Phys. Rev. Lett. 103, 108101 (2009).

    Article  ADS  Google Scholar 

  29. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shao, Z., Zhu, J., Chen, Y., Zhang, Y. & Yu, S. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun. 9, 926 (2018).

  31. Eismann, J. S., Banzer, P. & Neugebauer, M. Spin–orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res. 1, 033143 (2019).

    Article  Google Scholar 

  32. Roichman, Y., Sun, B., Stolarski, A. & Grier, D. G. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys. Rev. Lett. 101, 128301 (2008).

    Article  ADS  Google Scholar 

  33. Bag, A., Neugebauer, M., Woźniak, P., Leuchs, G. & Banzer, P. Transverse Kerker scattering for angstrom localization of nanoparticles. Phys. Rev. Lett. 121, 193902 (2018).

    Article  ADS  Google Scholar 

  34. Humblet, J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 10, 585–603 (1943).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jauch, J. M. & Rohrlich, F. The Theory of Photons and Electrons (Springer, 1976).

  36. Crichton, J. H. & Marston, P. L. The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation. Electron. J. Differ. Equ. 4, 37–50 (2000).

  37. Waterman, P. C. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 3, 825–839 (1971).

    Article  ADS  Google Scholar 

  38. Nieminen, T. A., Asavei, T., Loke, V. L., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Symmetry and the generation and measurement of optical torque. J. Quant. Spectrosc. Radiat. Transf. 110, 1472–1482 (2009).

    Article  ADS  Google Scholar 

  39. Bekshaev, A. & Vasnetsov, M. in Twisted Photons (eds Torres, J. P. & Torner, L.) Ch. 2 (Wiley, 2011).

  40. Otte, E., Tekce, K. & Denz, C. Tailored intensity landscapes by tight focusing of singular vector beams. Opt. Express 25, 20194–20201 (2017).

    Article  Google Scholar 

  41. Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018).

    Article  ADS  Google Scholar 

  42. Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011).

    Article  ADS  MATH  Google Scholar 

  43. Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).

    Article  ADS  Google Scholar 

  44. Loke, V. L., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transf. 110, 1460–1471 (2009).

    Article  ADS  Google Scholar 

  45. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).

    Google Scholar 

  46. Yurkin, M. A. & Hoekstra, A. G. The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  47. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

  48. Kloeden, P. E. & Platen, E. Numerical Solution of Stochastic Differential Equations (Springer, 1992).

Download references


A.B.S., H.R.-D. and T.A.N. acknowledge financial support from the Australian Research Council Discovery Project DP180101002. A.B.S. and H.R.-D. acknowledge support from the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS, CE170100009). A.B.S. also thanks C. Wu for suggesting improvements to Fig. 1.

Author information

Authors and Affiliations



A.B.S. and H.R.-D. conceived the investigation. A.B.S. designed the experiment and simulations, as well as collected and analysed the data. A.B.S., H.R.-D. and T.A.N. composed and edited the manuscript. A.B.S. composed the supplementary information.

Corresponding authors

Correspondence to Alexander B. Stilgoe, Timo A. Nieminen or Halina Rubinsztein-Dunlop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Philip Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Sections 1–4.

Supplementary Video 1

Demonstration of transverse rotation of a vaterite particle.

Supplementary Video 2

Simulation of vaterite particle motion.

Supplementary Video 3

Cross-polarizer video of a rotating vaterite particle.

Supplementary Video 4

Simulation of light observed in the Stokes measurement.

Supplementary Video 5

Observation of transverse rotation in a deformed vaterite particle.

Supplementary Video 6

Transverse rotation and orbiting of a vaterite particle.

Supplementary Video 7

Alternate axis of transverse rotation.

Supplementary Video 8

Alternate axis of transverse rotation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stilgoe, A.B., Nieminen, T.A. & Rubinsztein-Dunlop, H. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles. Nat. Photon. 16, 346–351 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing