Abstract
The interaction between structured light beams possessing optical angular momentum and small particles promises new opportunities for optical manipulation, such as the generation of light-induced torque and rotation of objects. However, so far, studies have largely centred on nanoscale particles. Here we report the observation and measurement of the transfer of transverse angular momentum to birefringent spherical vaterite particles several wavelengths in size. We outline the physics behind the beam used to control the particles, perform quantitative measurements of the transverse spin angular momentum transfer and demonstrate the generation of fluid flow around multiple rotation axes. The findings show that light can impart controllable rotational degrees of freedom to microparticles. In the future, the approach may prove useful for investigating the dynamics of complex fluids in three dimensions, studying the shear force on cell monolayers or cooling an optically trapped particle to the quantum ground state.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Light-driven single-cell rotational adhesion frequency assay
eLight Open Access 08 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
All practically distributable raw and processed data (such as images, signal traces and tracked positions) are available from the corresponding authors upon reasonable request.
References
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).
Friese, M. E. J., Enger, J., Rubinsztein-Dunlop, H. & Heckenberg, N. R. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A 54, 1593–1596 (1996).
Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997).
Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).
Fällman, E. & Axner, O. Design for fully steerable dual-trap optical tweezers. Appl. Opt. 36, 2107–2113 (1997).
Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).
Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).
Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).
Zhang, S. et al. Ultrasensitive rotating photonic probes for complex biological systems. Optica 4, 1103–1108 (2017).
Moothoo, D. N. et al. Beth’s experiment using optical tweezers. Am. J. Phys. 69, 271–276 (2001).
Ha, S. et al. Single-crystal rutile TiO2 nanocylinders are highly effective transducers of optical force and torque. ACS Photon. 6, 1255–1265 (2019).
O’Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).
Simpson, S. H. & Hanna, S. Optical angular momentum transfer by Laguerre-Gaussian beams. J. Opt. Soc. Am. A 26, 625–638 (2009).
Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).
Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).
Neugebauer, M., Bauer, T., Aiello, A. & Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 114, 063901 (2015).
Parkin, S. et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt. Express 17, 21944–21955 (2009).
Cölfen, H. & Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).
Vikulina, A. et al. Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: from submicron to giant. Mater. Des. 197, 109220 (2021).
Vogel, R. et al. Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25, 11672–11679 (2009).
Svenskaya, Y. I. et al. Key parameters for size- and shape-controlled synthesis of vaterite particles. Cryst. Growth Des. 18, 331–337 (2017).
Nieminen, T. A., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A 10, 115005 (2008).
Wu, P., Huang, R., Tischer, C., Jonas, A. & Florin, E.-L. Direct measurement of the nonconservative force field generated by optical tweezers. Phys. Rev. Lett. 103, 108101 (2009).
Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).
Shao, Z., Zhu, J., Chen, Y., Zhang, Y. & Yu, S. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun. 9, 926 (2018).
Eismann, J. S., Banzer, P. & Neugebauer, M. Spin–orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res. 1, 033143 (2019).
Roichman, Y., Sun, B., Stolarski, A. & Grier, D. G. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys. Rev. Lett. 101, 128301 (2008).
Bag, A., Neugebauer, M., Woźniak, P., Leuchs, G. & Banzer, P. Transverse Kerker scattering for angstrom localization of nanoparticles. Phys. Rev. Lett. 121, 193902 (2018).
Humblet, J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 10, 585–603 (1943).
Jauch, J. M. & Rohrlich, F. The Theory of Photons and Electrons (Springer, 1976).
Crichton, J. H. & Marston, P. L. The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation. Electron. J. Differ. Equ. 4, 37–50 (2000).
Waterman, P. C. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 3, 825–839 (1971).
Nieminen, T. A., Asavei, T., Loke, V. L., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Symmetry and the generation and measurement of optical torque. J. Quant. Spectrosc. Radiat. Transf. 110, 1472–1482 (2009).
Bekshaev, A. & Vasnetsov, M. in Twisted Photons (eds Torres, J. P. & Torner, L.) Ch. 2 (Wiley, 2011).
Otte, E., Tekce, K. & Denz, C. Tailored intensity landscapes by tight focusing of singular vector beams. Opt. Express 25, 20194–20201 (2017).
Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018).
Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011).
Nieminen, T. A. et al. Optical tweezers computational toolbox. J. Opt. A 9, S196–S203 (2007).
Loke, V. L., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transf. 110, 1460–1471 (2009).
Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).
Yurkin, M. A. & Hoekstra, A. G. The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).
Kloeden, P. E. & Platen, E. Numerical Solution of Stochastic Differential Equations (Springer, 1992).
Acknowledgements
A.B.S., H.R.-D. and T.A.N. acknowledge financial support from the Australian Research Council Discovery Project DP180101002. A.B.S. and H.R.-D. acknowledge support from the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS, CE170100009). A.B.S. also thanks C. Wu for suggesting improvements to Fig. 1.
Author information
Authors and Affiliations
Contributions
A.B.S. and H.R.-D. conceived the investigation. A.B.S. designed the experiment and simulations, as well as collected and analysed the data. A.B.S., H.R.-D. and T.A.N. composed and edited the manuscript. A.B.S. composed the supplementary information.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Philip Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–9 and Sections 1–4.
Supplementary Video 1
Demonstration of transverse rotation of a vaterite particle.
Supplementary Video 2
Simulation of vaterite particle motion.
Supplementary Video 3
Cross-polarizer video of a rotating vaterite particle.
Supplementary Video 4
Simulation of light observed in the Stokes measurement.
Supplementary Video 5
Observation of transverse rotation in a deformed vaterite particle.
Supplementary Video 6
Transverse rotation and orbiting of a vaterite particle.
Supplementary Video 7
Alternate axis of transverse rotation.
Supplementary Video 8
Alternate axis of transverse rotation.
Rights and permissions
About this article
Cite this article
Stilgoe, A.B., Nieminen, T.A. & Rubinsztein-Dunlop, H. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles. Nat. Photon. 16, 346–351 (2022). https://doi.org/10.1038/s41566-022-00983-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-022-00983-3
This article is cited by
-
Economical generation of high-quality optical vortices with gradual-width Fermat spiral slit mask
Science China Physics, Mechanics & Astronomy (2023)
-
Light-driven single-cell rotational adhesion frequency assay
eLight (2022)