Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum microscopy based on Hong–Ou–Mandel interference

Abstract

Hong–Ou–Mandel (HOM) interference—the bunching of indistinguishable photons at a beamsplitter—is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Here we report a full-field, scan-free quantum imaging technique that exploits HOM interference to reconstruct the surface depth profile of transparent samples. We demonstrate the ability to retrieve images with micrometre-scale depth features with photon flux as small as seven photon pairs per frame. Using a single-photon avalanche diode camera, we measure both bunched and anti-bunched photon-pair distributions at the output of an HOM interferometer, which are combined to provide a lower-noise image of the sample. This approach demonstrates the possibility of HOM microscopy as a tool for the label-free imaging of transparent samples in the very low photon regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of HOM imaging.
Fig. 2: HOM imaging setup.
Fig. 3: HOM sensing with an SPAD camera.
Fig. 4: Full-field HOM sensing.
Fig. 5: Full-field HOM imaging.

Similar content being viewed by others

Data availability

The experimental data that support the findings presented here are available from https://doi.org/10.5525/gla.researchdata.1241.

Code availability

The codes that support the findings presented here are available from https://doi.org/10.5525/gla.researchdata.1241.

References

  1. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  2. Lee, S.-Y. & Nha, H. Second-order superposition operations via Hong-Ou-Mandel interference. Phys. Rev. A 85, 043816 (2012).

    Article  ADS  Google Scholar 

  3. Zhang, Y. et al. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv. 2, e1501165 (2016).

    Article  ADS  Google Scholar 

  4. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  5. Nagali, E. et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photon. 3, 720–723 (2009).

    Article  ADS  Google Scholar 

  6. Lyons, A. et al. Attosecond-resolution Hong-Ou-Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).

    Article  ADS  Google Scholar 

  7. Scott, H., Branford, D., Westerberg, N., Leach, J. & Gauger, E. M. Beyond coincidence in Hong-Ou-Mandel interferometry. Phys. Rev. A 102, 33714 (2020).

    Article  ADS  Google Scholar 

  8. Bornman, N. et al. Ghost imaging using entanglement-swapped photons. npj Quantum Inf. 5, 63 (2019).

    Article  ADS  Google Scholar 

  9. Bornman, N., Prabhakar, S., Vallés, A., Leach, J. & Forbes, A. Ghost imaging with engineered quantum states by Hong–Ou–Mandel interference. New J. Phys. 21, 073044 (2019).

    Article  ADS  Google Scholar 

  10. Genovese, M. Real applications of quantum imaging. J. Opt. 18, 073002 (2016).

    Article  ADS  Google Scholar 

  11. Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Article  Google Scholar 

  12. Gilaberte Basset, M. et al. Perspectives for applications of quantum imaging. Laser Photonics Rev. 13, 1900097 (2019).

    Article  ADS  Google Scholar 

  13. Moreau, P.-A., Mougin-Sisini, J., Devaux, F. & Lantz, E. Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion. Phys. Rev. A 86, 010101 (2012).

    Article  ADS  Google Scholar 

  14. Edgar, M. et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 3, 984 (2012).

    Article  ADS  Google Scholar 

  15. Lubin, G. et al. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express 27, 32863–32882 (2019).

    Article  Google Scholar 

  16. Ianzano, C. et al. Fast camera spatial characterization of photonic polarization entanglement. Sci. Rep. 10, 6181 (2020).

    Article  ADS  Google Scholar 

  17. Ndagano, B. et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. npj Quantum Inf. 6, 94 (2020).

    Article  ADS  Google Scholar 

  18. Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015).

    Article  ADS  Google Scholar 

  19. Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Ghost imaging using optical correlations. Laser Photonics Rev. 12, 1700143 (2018).

    Article  ADS  Google Scholar 

  20. Devaux, F., Mosset, A., Bassignot, F. & Lantz, E. Quantum holography with biphotons of high Schmidt number. Phys. Rev. A 99, 033854 (2019).

    Article  ADS  Google Scholar 

  21. Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    Article  ADS  Google Scholar 

  22. Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).

    Article  ADS  Google Scholar 

  23. Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).

    Article  ADS  Google Scholar 

  24. Camphausen, R. et al. A quantum-enhanced wide-field phase imager. Science Advances 7, eabj2155 (2021).

    Article  ADS  Google Scholar 

  25. Defienne, H. et al. Pixel super-resolution using spatially-entangled photon pairs. Preprint at https://arxiv.org/abs/2105.10351 (2021).

  26. Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    Article  Google Scholar 

  27. Morimoto, K. et al. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7, 346–354 (2020).

    Article  Google Scholar 

  28. Morimoto, K. & Charbon, E. High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique. Opt. Express 28, 13068–13080 (2020).

    Article  Google Scholar 

  29. Radoslaw, C., Jachura, M., Banaszek, K. & Wasilewski, W. Hologram of a single photon. Nat. Photon. 10, 576–579 (2016).

    Article  ADS  Google Scholar 

  30. Ibarra-Borja, Z., Sevilla-Gutiérrez, C., Ramírez-Alarcón, R., Cruz-Ramírez, H. & U’Ren, A. B. Experimental demonstration of full-field quantum optical coherence tomography. Photon. Res. 8, 51–56 (2020).

    Article  Google Scholar 

  31. Devaux, F., Mosset, A., Moreau, P.-A. & Lantz, E. Imaging spatiotemporal Hong-Ou-Mandel interference of biphoton states of extremely high Schmidt number. Phys. Rev. X 10, 031031 (2020).

    Google Scholar 

  32. Restuccia, S. et al. Photon bunching in a rotating reference frame. Phys. Rev. Lett. 123, 110401 (2019).

    Article  ADS  Google Scholar 

  33. Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).

    Article  ADS  Google Scholar 

  34. Farsiu, S., Robinson, M., Elad, M. & Milanfar, P. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004).

    Article  ADS  Google Scholar 

  35. Phan, N. M., Cheng, M. F., Bessarab, D. A. & Krivitsky, L. A. Interaction of fixed number of photons with retinal rod cells. Phys. Rev. Lett. 112, 213601 (2014).

    Article  ADS  Google Scholar 

  36. Renna, M. et al. Fast-gated 16 × 1 SPAD array for non-line-of-sight imaging applications. Instruments 4, 14 (2020).

  37. Riccardo, S., Conca, E., Sesta, V. & Tosi, A. Fast-gated 16 × 16 SPAD array with on-chip 6 ps TDCs for non-line-of-sight imaging. In 2021 IEEE Photonics Conference (IPC) 1–2 (IEEE, 2021).

  38. Nam, J. H. et al. Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second. Nat. Commun. 12, 6526 (2021).

    Article  ADS  Google Scholar 

  39. Walborn, S. P., de Oliveira, A. N., Pádua, S. & Monken, C. H. Multimode Hong-Ou-Mandel interference. Phys. Rev. Lett. 90, 143601 (2003).

    Article  ADS  Google Scholar 

  40. Kay, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).

Download references

Acknowledgements

We thank M. Cromb for fruitful discussions on the interpretation of the results. We acknowledge financial support from the UK Engineering and Physical Sciences Research Council (grants EP/R030413/1, EP/M01326X/1 and EP/R030081/1) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 801060. D.F. acknowledges support from the Royal Academy of Engineering Chair in Emerging Technologies programme. H.D. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 840958. N.W. acknowledges support from the Royal Commission for the Exhibition of 1851.

Author information

Authors and Affiliations

Authors

Contributions

D.F. conceived the concept and supervised the work. B.N., H.D., A.L. and D.F. conceived and discussed the experimental setup. B.N. performed the experiment. Y.D.S. microfabricated the etched sample. D.B., N.W. and E.M.G. applied noise reduction approaches. All the authors contributed to the analysis of the results and the manuscript.

Corresponding author

Correspondence to Daniele Faccio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndagano, B., Defienne, H., Branford, D. et al. Quantum microscopy based on Hong–Ou–Mandel interference. Nat. Photon. 16, 384–389 (2022). https://doi.org/10.1038/s41566-022-00980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00980-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing