Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature superfluorescence in hybrid perovskites and its origins

An Author Correction to this article was published on 14 April 2022

This article has been updated

Abstract

The formation of coherent macroscopic states and the manipulation of their entanglement using external stimuli are essential for emerging quantum applications. However, the observation of collective quantum phenomena such as Bose–Einstein condensation, superconductivity, superfluidity and superradiance has been limited to extremely low temperatures to suppress dephasing due to random thermal agitations. Here we report room-temperature superfluorescence in hybrid perovskite thin films. This surprising discovery shows that in this material platform, there exists an extremely strong immunity to electronic dephasing due to thermal processes. To explain this observation, we propose that the formation of large polarons in hybrid perovskites provides a quantum analogue of vibration isolation to electronic excitation and protects it against dephasing even at room temperature. Understanding the origins of sustained quantum coherence and the superfluorescence phase transition at high temperatures can provide guidance to design systems for emerging quantum information technologies and to realize similar high-temperature macroscopic quantum phenomena in tailored materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectroscopic signatures of SF for quasi-2D CsPbBr3 thin film at 78 K and 300 K.
Fig. 2: Fine-step TRPL data at 78 K and 300 K.
Fig. 3: Temperature-dependent fine-step TRPL data at threshold fluences.
Fig. 4: Graphic representation of QAVI.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Bergmann, M. & Gühne, O. Entanglement criteria for Dicke states. J. Phys. A 46, 385304 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  2. Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A 47, 424006 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  3. Eastham, P. R. & Rosenow, B. in Universal Themes of Bose-Einstein Condensation (eds Proukakis, N. et al.) 462–476 (Cambridge Univ. Press, 2017).

  4. Dai, D. & Monkman, A. Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: evidence for spontaneous Bose–Einstein condensation of excitons. Phys. Rev. B 84, 115206 (2011).

    Article  ADS  Google Scholar 

  5. Noe, G. T. II et al. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nat. Phys. 8, 219–224 (2012).

    Article  Google Scholar 

  6. Florian, R., Schwan, L. O. & Schmid, D. Two-color superfluorescence of O2-centers in KCl. J. Lumin. 31–32, 169–171 (1984).

    Article  Google Scholar 

  7. Miyajima, K., Kagotani, Y., Saito, S., Ashida, M. & Itoh, T. Superfluorescent pulsed emission from biexcitons in an ensemble of semiconductor quantum dots. J. Phys. Condens. Matter 21, 195802 (2009).

    Article  ADS  Google Scholar 

  8. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  ADS  Google Scholar 

  9. Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

  10. Malcuit, M. S., Maki, J. J., Simkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189 (1987).

    Article  ADS  Google Scholar 

  11. Miyajima, K., Kumagai, Y. & Ishikawa, A. Ultrashort radiation of biexcitonic superfluorescence from high-density assembly of semiconductor quantum dots. J. Phys. Chem. C 121, 27751–27757 (2017).

    Article  Google Scholar 

  12. Okada, J., Ikeda, K. & Matsuoka, M. Streak camera investigation of superradiance development. Opt. Commun. 27, 321–323 (1978).

    Article  ADS  Google Scholar 

  13. Kumarakrishnan, A. & Han, X. Superfluorescence from optically trapped calcium atoms. Phys. Rev. A 58, 4153 (1998).

    Article  ADS  Google Scholar 

  14. Dai, D. Brief comment: Dicke superradiance and superfluorescence find application for remote sensing in air. Preprint at https://arxiv.org/abs/1108.5360 (2011).

  15. Siegman, A. E. Lasers (Univ. Science Books, 1986).

  16. Benedict, M. G. Super-Radiance: Multiatomic Coherent Emission (CRC Press, 1996).

  17. Ariunbold, G. O., Sautenkov, V. A., Rostovtsev, Y. V. & Scully, M. O. Ultrafast laser control of backward superfluorescence towards standoff sensing. Appl. Phys. Lett. 104, 021114 (2014).

    Article  ADS  Google Scholar 

  18. Burnham, D. C. & Chiao, R. Y. Coherent resonance fluorescence excited by short light pulses. Phys. Rev. 188, 667 (1969).

    Article  ADS  Google Scholar 

  19. Jiang, Y., Wei, J. & Yuan, M. Energy-funneling process in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 12, 2593–2606 (2021).

    Article  Google Scholar 

  20. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  ADS  Google Scholar 

  21. Haake, F., King, H., Schröder, G., Haus, J. & Glauber, R. Fluctuations in superfluorescence. Phys. Rev. A 20, 2047 (1979).

    Article  ADS  Google Scholar 

  22. Traverso, A. J. et al. Coherence brightened laser source for atmospheric remote sensing. Proc. Natl Acad. Sci. USA 109, 15185–15190 (2012).

    Article  ADS  Google Scholar 

  23. Yuan, L. et al. Theoretical analysis of the coherence-brightened laser in air. Phys. Rev. A 87, 023826 (2013).

    Article  ADS  Google Scholar 

  24. Rai, J. & Bowden, C. M. Quantum-statistical analysis of superfluorescence and amplified spontaneous emission in dense media. Phys. Rev. A 46, 1522 (1992).

    Article  ADS  Google Scholar 

  25. Ariunbold, G. O., Sautenkov, V. A. & Scully, M. O. Quantum fluctuations of superfluorescence delay observed with ultrashort optical excitations. Phys. Lett. A 376, 335–338 (2012).

    Article  ADS  Google Scholar 

  26. Maki, J. J., Malcuit, M. S., Raymer, M. G., Boyd, R. W. & Drummond, P. D. Influence of collisional dephasing processes on superfluorescence. Phys. Rev. A 40, 5135 (1989).

    Article  ADS  Google Scholar 

  27. Nasu, M., Kawamura, K., Yoshida, T., Ishihara, J. & Miyajima, K. Influences of quantum fluctuation on superfluorescent spectra observed by single-shot measurement for semiconductor quantum dots. Appl. Phys. Express 13, 062005 (2020).

    Article  ADS  Google Scholar 

  28. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  ADS  Google Scholar 

  29. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  Google Scholar 

  30. Monahan, D. M. et al. Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck. J. Phys. Chem. Lett. 8, 3211–3215 (2017).

    Article  Google Scholar 

  31. Lan, Y. et al. Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. Sci. Adv. 5, eaaw5558 (2019).

    Article  ADS  Google Scholar 

  32. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

    Article  ADS  Google Scholar 

  33. Long, H. et al. Exciton–phonon interaction in quasi-two dimensional layered (PEA)2(CsPbBr3)n−1PbBr4 perovskite. Nanoscale 11, 21867–21871 (2019).

    Article  Google Scholar 

  34. Sonnichsen, C. D., Strandell, D. P., Brosseau, P. J. & Kambhampati, P. Polaronic quantum confinement in bulk CsPbBr3 perovskite crystals revealed by state-resolved pump/probe spectroscopy. Phys. Rev. Res. 3, 023147 (2021).

    Article  Google Scholar 

  35. Puppin, M. et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 124, 206402 (2020).

    Article  ADS  Google Scholar 

  36. Chan, C. C. et al. Uncovering the electron‐phonon interplay and dynamical energy‐dissipation mechanisms of hot carriers in hybrid lead halide perovskites. Adv. Energy Mater. 11, 2003071 (2021).

    Article  ADS  Google Scholar 

  37. Emin, D. Polarons (Cambridge Univ. Press, 2012).

Download references

Acknowledgements

We acknowledge helpful discussions with H. Ade (North Carolina State University (NCSU)). We also acknowledge the NCSU Imaging and Kinetic Spectroscopy facility. K.G. and F.S. acknowledge funding from the National Science Foundation’s ‘Designing Materials to Revolutionize and Engineer our Future’ programme (grant no. 1729383) and the NCSU Research and Innovation Seed Funding (RISF).

Author information

Authors and Affiliations

Authors

Contributions

K.G. conceived the research problems and QAVI model and coordinated the studies. M.B. and G.F. performed the PL, TRPL and pump–probe experiments, as well as analysed the results. D.S. assisted with the pump–probe experiments, and J.M. assisted with the TRPL experiments. L.L., Q.D., J.M. and F.S. provided the samples. Y.M. performed the atomic force microscopy experiment. V.V.T. performed the theoretical simulations. K.G. drafted the manuscript with the help of M.B. and G.F. All the authors helped with editing the manuscript.

Corresponding author

Correspondence to Kenan Gundogdu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4 and Figs. 1–29.

Source data

Source Data Fig. 1

Source data for graphs.

Source Data Fig. 2

Source data for graphs.

Source Data Fig. 3

Source data for graphs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biliroglu, M., Findik, G., Mendes, J. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022). https://doi.org/10.1038/s41566-022-00974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00974-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing