Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor

Abstract

Chiral nanophotonic interfaces enable propagation direction-dependent interactions between guided optical modes and circularly dichroic materials. Electrical tuning of interface chirality would aid active, switchable non-reciprocity in on-chip optoelectronic and photonic circuitry, but remains an outstanding challenge. Here, we report electrically controllable chirality in a nanophotonic interface with atomically thin monolayer tungsten diselenide (WSe2). Titanium dioxide waveguides are directly fabricated on the surface of low-disorder, boron nitride-encapsulated WSe2. Following integration, photoluminescence from excitonic states into the waveguide can be electrically switched between balanced and directionally biased emission. The operational principle leverages the doping-dependent valley polarization of excitonic states in WSe2. Furthermore, the nanophotonic waveguide can function as a near-field source for diffusive exciton fluxes, which display valley and spin polarizations that are inherited from the interface chirality. Our versatile fabrication approach enables the deterministic integration of photonics with van der Waals heterostructures and could provide optical control over their excitonic and charge-carrier behaviour.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Chiral nanophotonic–TMDC interface.
Fig. 2: Electrostatic tuning of interface.
Fig. 3: Gate dependence of valley polarization.
Fig. 4: Photonic pumping of valley(spin)-polarized exciton fluxes.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. Aiello, A., Banzer, P., Neugebaueru, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 9, 789–795 (2015).

    ADS  Google Scholar 

  2. Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015).

    ADS  Google Scholar 

  3. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    ADS  Google Scholar 

  4. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014).

    ADS  Google Scholar 

  5. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).

    Google Scholar 

  6. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    ADS  Google Scholar 

  7. Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016).

    ADS  Google Scholar 

  8. le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 6, 6695 (2015).

    ADS  Google Scholar 

  9. Soellner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

    ADS  Google Scholar 

  10. Gong, S. H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley–photon interface through optical spin–orbit coupling. Science 359, 443–447 (2018).

    ADS  Google Scholar 

  11. Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014).

    ADS  Google Scholar 

  12. High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

    ADS  Google Scholar 

  13. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    ADS  Google Scholar 

  14. Tang, L. et al. On-chip chiral single-photon interface: isolation and unidirectional emission. Phys. Rev. A 99, 43833 (2019).

    ADS  Google Scholar 

  15. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    ADS  Google Scholar 

  16. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Google Scholar 

  17. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    ADS  Google Scholar 

  18. Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    ADS  Google Scholar 

  19. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    ADS  Google Scholar 

  20. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    ADS  Google Scholar 

  21. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    ADS  Google Scholar 

  22. Chervy, T. et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics 5, 1281–1287 (2018).

    Google Scholar 

  23. Sun, L. Y. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 13, 180–184 (2019).

    ADS  Google Scholar 

  24. Yang, Z. L., Aghaeimeibodi, S. & Waks, E. Chiral light–matter interactions using spin-valley states in transition metal dichalcogenides. Opt. Express 27, 21367–21379 (2019).

    ADS  Google Scholar 

  25. Guo, Q. B. et al. Routing a chiral Raman signal based on spin–orbit interaction of light. Phys. Rev. Lett. 123, 183903 (2019).

    ADS  Google Scholar 

  26. Gong, S. H., Komen, I., Alpeggiani, F. & Kuipers, L. Nanoscale optical addressing of valley pseudospins through transverse optical spin. Nano Lett. 20, 4410–4415 (2020).

    ADS  Google Scholar 

  27. Liu, W. J. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).

    MathSciNet  Google Scholar 

  28. Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).

    ADS  Google Scholar 

  29. Dey, P. et al. Gate-controlled spin-valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).

    ADS  Google Scholar 

  30. Rice, W. D. et al. Persistent optically induced magnetism in oxygen-deficient strontium titanate. Nat. Mater. 13, 481–487 (2014).

    ADS  Google Scholar 

  31. Lalieu, M. L. M., Lavrijsen, R. & Koopmans, B. Integrating all-optical switching with spintronics. Nat. Commun. 10, 110 (2019).

    ADS  Google Scholar 

  32. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 21026 (2017).

    Google Scholar 

  33. Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2d Mater. 4, 31011 (2017).

    Google Scholar 

  34. Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    ADS  Google Scholar 

  35. Butcher, A. et al. High-Q nanophotonic resonators on diamond membranes using templated atomic layer deposition of TiO2. Nano Lett. 20, 4603–4609 (2020).

    ADS  Google Scholar 

  36. Ye, Z. L. et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers. Nat. Commun. 9, 3718 (2018).

    ADS  Google Scholar 

  37. Li, Z. P. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 9, 3719 (2018).

    ADS  Google Scholar 

  38. Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron–hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

    ADS  Google Scholar 

  39. Singh, A. et al. Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys. Rev. Lett. 117, 257402 (2016).

    ADS  Google Scholar 

  40. Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    ADS  Google Scholar 

  41. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    ADS  Google Scholar 

  42. Glazov, M. M. Quantum interference effect on exciton transport in monolayer semiconductors. Phys. Rev. Lett. 124, 166802 (2020).

    ADS  Google Scholar 

  43. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    ADS  Google Scholar 

  44. Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed disorder. Phys. Rev. B 101, 115430 (2020).

    ADS  Google Scholar 

  45. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    ADS  Google Scholar 

  46. Jin, C. H. et al. Imaging of pure spin-valley diffusion current in WS2–WSe2 heterostructures. Science 360, 893–896 (2018).

    ADS  Google Scholar 

  47. Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 (2019).

    ADS  Google Scholar 

  48. Costache, M. V., Sladkov, M., Watts, S. M., van der Wal, C. H. & van Wees, B. J. Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006).

    ADS  Google Scholar 

  49. Sanchez, O. L., Ovchinnikov, D., Misra, S., Allain, A. & Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 16, 5792–5797 (2016).

    ADS  Google Scholar 

  50. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Revi. Mod. Phys. 76, 323–410 (2004).

    ADS  Google Scholar 

  51. Cadiz, F. et al. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Appl. Phys. Lett. 112, 152106 (2018).

    ADS  Google Scholar 

  52. Liu, E. et al. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 123, 027401 (2019).

    ADS  Google Scholar 

  53. Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 14, 256–262 (2020).

    ADS  Google Scholar 

  54. Seol, M. et al. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical Ostwald ripening. Adv. Mater. 32, 2003542 (2020).

    Google Scholar 

  55. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    ADS  Google Scholar 

  56. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    ADS  Google Scholar 

  57. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals Solids. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-01061-5 (2022).

  58. Seyler, K. L. et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  Google Scholar 

  59. Tran, K. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  Google Scholar 

  60. Jin, C. H. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  Google Scholar 

  61. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    ADS  Google Scholar 

  62. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    ADS  Google Scholar 

  63. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    ADS  Google Scholar 

  64. Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. https://doi.org/10.1126/sciadv.aba1830 (2020).

  65. Li, J. et al. Valley relaxation of resident electrons and holes in a monolayer semiconductor: dependence on carrier density and the role of substrate-induced disorder. Phys. Rev. Mater. 5, 044001 (2021).

    ADS  Google Scholar 

  66. Robert, C. et al. Spin/valley pumping of resident electrons in WSe2 and WS2 monolayers. Nat. Commun. 12, 5455 (2021).

    ADS  Google Scholar 

  67. Hao, K., Shreiner, R., & High, A. A. Optically controllable magnetism in atomically thin semiconductors. Preprint at https://arxiv.org/abs/2108.05931 (2021).

  68. Guddala, S. et al. All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides. Nat. Commun. 12, 3746 (2021).

    ADS  Google Scholar 

  69. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 13101 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

This work made use of the Pritzker Nanofabrication Facility part of the Pritzker School of Molecular Engineering at the University of Chicago, which receives support from Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), a node of the National Science Foundation’s National Nanotechnology Coordinated Infrastructure. This work also made use of the shared facilities at the University of Chicago Materials Research Science and Engineering Center, supported by the National Science Foundation under award number DMR-2011854. Funding was provided by Army Research Office Grant #W911NF-20-1-0217 (R.S. and K.H.) and the Boeing company (A.B.). A.B. acknowledges support from the NSF Graduate Research Fellowship under grant no. DGE-1746045. We acknowledge Y. Zhou, J. Park and A. Dibos for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.A.H. conceived the study. K.H., R.S. and A.B. developed the fabrication procedure. K.H. and R.S. performed experiments, analyses, and simulations. K.H., R.S. and A.A.H. wrote the manuscript with extensive input from all authors.

Corresponding author

Correspondence to Alexander A. High.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Mikhail Kats and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6 and Figs. 1–16.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shreiner, R., Hao, K., Butcher, A. et al. Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nat. Photon. 16, 330–336 (2022). https://doi.org/10.1038/s41566-022-00971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00971-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing