Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cavity-enhanced linear dichroism in a van der Waals antiferromagnet

Abstract

Optical birefringence is a fundamental optical property of crystals widely used for filtering and beam splitting of photons. Birefringent crystals concurrently possess the property of linear dichroism (LD), which allows asymmetric propagation or attenuation of light with two different polarizations. This property of LD has been widely studied from small molecules to polymers and crystals but has rarely been engineered on demand. Here we use the newly discovered spin-charge coupling in the van der Waals antiferromagnetic insulator FePS3 to induce large in-plane optical anisotropy and consequently LD. We report that the LD in this antiferromagnetic insulator is tunable both spectrally and in terms of its magnitude as a function of the cavity coupling. We demonstrate near-unity LD in the visible–near-infrared range in cavity-coupled FePS3 crystals and derive its dispersion as a function of the cavity length and FePS3 thickness. Our results hold wide implications for the use of cavity-tuned LD as a diagnostic probe for strongly correlated quantum materials and offer new opportunities for miniaturized, on-chip beamsplitters and tunable filters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical in-plane anisotropic behaviour in AFM van der Waals FePS3.
Fig. 2: LD spectrum of FePS3.
Fig. 3: Simulation model of cavity-enhanced multilayer FePS3.
Fig. 4: Spectral tuning of LD enhancement by tuning the cavity sizes.
Fig. 5: LD mapping and potential applications for birefringence tunability.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

Code availability

The codes used in this study for plotting and modelling are available from the corresponding authors upon request.

References

  1. Ermolaev, G. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article  ADS  Google Scholar 

  2. Norden, B. Linear and circular dichroism of polymeric pseudoisocyanine. J. Phys. Chem. 81, 151–159 (1977).

    Article  Google Scholar 

  3. Weber, M. F., Stover, C. A., Gilbert, L. R., Nevitt, T. J. & Ouderkirk, A. J. Giant birefringent optics in multilayer polymer mirrors. Science 287, 2451–2456 (2000).

    Article  ADS  Google Scholar 

  4. Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photon 11, 628–633 (2017).

    Article  ADS  Google Scholar 

  5. Mao, N. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).

    Article  Google Scholar 

  6. Wang, Y. Y. et al. In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy. Nanoscale 11, 20199–20205 (2019).

    Article  Google Scholar 

  7. Kats, M. A. et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl Acad. Sci. USA 109, 12364–12368 (2012).

    Article  ADS  Google Scholar 

  8. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  9. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  10. Lançon, D. et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Phys. Rev. B 94, 214407 (2016).

    Article  ADS  Google Scholar 

  11. Lançon, D., Ewings, R., Guidi, T., Formisano, F. & Wildes, A. R. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).

    Article  ADS  Google Scholar 

  12. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article  ADS  Google Scholar 

  13. Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 031009 (2016).

    Article  Google Scholar 

  14. McCreary, A. et al. Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy. Phys. Rev. B 101, 064416 (2020).

    Article  ADS  Google Scholar 

  15. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Article  ADS  Google Scholar 

  16. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    Article  ADS  Google Scholar 

  17. Chu, H. et al. Linear magnetoelectric phase in ultrathin MnPS3 probed by optical second harmonic generation. Phys. Rev. Lett. 124, 027601 (2020).

    Article  ADS  Google Scholar 

  18. Ni, Z. et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–787 (2021).

    Article  ADS  Google Scholar 

  19. Le Flem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se). J. Phys. 43, 455–461 (1982).

    Google Scholar 

  20. Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).

    Article  ADS  Google Scholar 

  21. Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).

    Article  ADS  Google Scholar 

  22. Xie, Q.-Y. et al. Crystallographic and magnetic properties of van der Waals layered FePS3 crystal. Chin. Phys. B 28, 056102 (2019).

    Article  ADS  Google Scholar 

  23. Joy, P. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    Article  ADS  Google Scholar 

  24. Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).

    Article  ADS  Google Scholar 

  25. Zhang, Q. et al. Observation of giant optical linear dichroism in a zigzag antiferromagnet FePS3. Nano Lett. 21, 6938–6945 (2021).

    Article  ADS  Google Scholar 

  26. Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).

    Article  ADS  Google Scholar 

  27. Kats, M. A., Blanchard, R., Genevet, P., & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

    Article  ADS  Google Scholar 

  28. Jariwala, D., Davoyan, A. R., Tagliabue, G., Sherrott, M. C., Wong, J. & Atwater, H. A. Near-unity absorption in van der Waals semiconductors for ultrathin optoelectronics. Nano Lett. 16, 5482–5487 (2016).

    Article  ADS  Google Scholar 

  29. Zhang, H. et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat. Commun. 11, 3552 (2020).

    Article  ADS  Google Scholar 

  30. Zhang, X.-X. et al. Spin dynamics slowdown near the antiferromagnetic critical point in atomically thin FePS3. Nano Lett. 21, 5045–5052 (2021).

    Article  ADS  Google Scholar 

  31. Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021).

    Article  ADS  Google Scholar 

  32. Little, A. et al. Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2. Nat. Mater. 19, 1062–1067 (2020).

    Article  ADS  Google Scholar 

  33. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  Google Scholar 

  34. Mandziak, A. et al. Tuning the Néel temperature in an antiferromagnet: the case of NixCo1−xO microstructures. Sci. Rep. 9, 13584 (2019).

    Article  ADS  Google Scholar 

  35. Eid, K., Sheu, B., Maksimov, O., Stone, M., Schiffer, P. & Samarth, N. Nanoengineered Curie temperature in laterally patterned ferromagnetic semiconductor heterostructures. Appl. Phys. Lett. 86, 152505 (2005).

    Article  ADS  Google Scholar 

  36. Li, Q. et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 18, 5974–5980 (2018).

    Article  ADS  Google Scholar 

  37. Yang, Y. et al. In-plane optical anisotropy of low-symmetry 2D GeSe. Adv. Opt. Mater. 7, 1801311 (2019).

    Article  Google Scholar 

  38. Zhong, M. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 15, 1701–1709 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

D.J. acknowledges primary support for this work by the US Army Research Office under contract number W911NF-19-1-0109. H.Z. and Z.N. were supported by the Vagelos Institute of Energy Science and Technology graduate fellowship. L.W. acknowledges partial support from the ARO under the Grants W911NF1910342, W911NF2020166 and W911NF2110131, and the University Research Foundation for the development of scanning conformal microscopes. D.J. and Z.N. also acknowledge the support of a seed grant from the National Science Foundation (NSF) supported University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530). F.P. acknowledges support from Kenyon College and NSF grant DMR-2004812. J.H. acknowledges support from the Air Force Office of Scientific Research (program manager G. Pomrenke) under award number FA9550-20RYCOR059. We acknowledge assistance from J. Lynch for the spectroscopic ellipsometry measurements.

Author information

Authors and Affiliations

Authors

Contributions

Z.N. discovered the large LD around 800 nm. D.J., H.Z. and Z.N. conceived the project. H.Z. and Z.N. made the samples, performed the linearly polarized reflectance measurements and atomic force microscopy characterization. H.Z. and Z.N. performed the calculation work. Under the supervision of L.W., Z.N. performed the LD imaging/spatial mapping. C.E.S. and J.R.H. performed the magnetic-field-tunable LD measurements. F.P. and A.B performed the ellipsometry measurements. With help from Z.N. and D.J., H.Z. analysed and interpreted the optical spectroscopy and simulation data. H.Z. and D.J. wrote the paper with input from all co-authors. D.J. supervised the entire study.

Corresponding authors

Correspondence to Liang Wu or Deep Jariwala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Han Wang, Yuanmu Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ni, Z., Stevens, C.E. et al. Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nat. Photon. 16, 311–317 (2022). https://doi.org/10.1038/s41566-022-00970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00970-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing