Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrahigh-resolution quantum-dot light-emitting diodes

Abstract

With the ever-growing demand for a greater number of pixels, next-generation displays have challenging requirements for resolution as well as colour gamut. Here, to meet this need, quantum-dot light-emitting diodes (QLEDs) with an ultrahigh pixel resolution of 9,072–25,400 pixels per inch are realized via transfer printing combined with the Langmuir–Blodgett film technology. To reduce the leakage current of the devices, a honeycomb-patterned layer of wide-bandgap quantum dots is embedded between the light-emitting quantum-dot pixels as a non-emitting charge barrier layer. Red and green QLEDs are demonstrated. Notably, the red devices achieve a brightness of up to 262,400 cd m−2 at an applied voltage of 8 V and a peak external quantum efficiency of 14.72%. This work provides a promising way for achieving ultrahigh-resolution QLED devices with high performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of sub-micrometre QD luminescent layer by LB–TP.
Fig. 2: Investigation of a honeycomb charge barrier layer.
Fig. 3: Structure and characterization of R-B-patterned QLED devices.
Fig. 4: Comparison with and without the barrier layer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  ADS  Google Scholar 

  2. Bae, W. K. et al. Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient. Adv. Mater. 21, 1690–1694 (2009).

    Article  Google Scholar 

  3. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  ADS  Google Scholar 

  4. Cho, K. S. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photon. 3, 341–345 (2009).

    Article  ADS  Google Scholar 

  5. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article  Google Scholar 

  6. Li, X. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  ADS  Google Scholar 

  7. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  ADS  Google Scholar 

  8. Yang, Y. X. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).

    Article  ADS  Google Scholar 

  9. Dai, X. L. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  ADS  Google Scholar 

  10. Liu, Y. et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes. ACS Nano 12, 1564–1570 (2018).

    Article  Google Scholar 

  11. Shen, P. Y. et al. Solution-processed double-junction quantum-dot light-emitting diodes with an EQE of over 40%. ACS Appl. Mater. Interfaces 11, 1065–1070 (2019).

    Article  Google Scholar 

  12. Yang, L. Q. et al. High-performance red quantum-dot light-emitting diodes based on organic electron transporting layer. Adv. Funct. Mater. 31, 2007686 (2021).

    Article  Google Scholar 

  13. Zhang, Z. X. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30, 1801387 (2018).

    Article  Google Scholar 

  14. Zhu, Y. B. et al. Ultrahighly efficient white quantum dot light-emitting diodes operating at low voltage. Adv. Optical Mater. 8, 2001479 (2020).

    Article  Google Scholar 

  15. Yang, J. et al. Toward full-color electroluminescent quantum dot displays. Nano Lett. 21, 26–33 (2021).

    Article  ADS  Google Scholar 

  16. Mei, W. et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 13, 2485–2491 (2020).

    Article  Google Scholar 

  17. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  ADS  Google Scholar 

  18. Yang, P., Zhang, L., Kang, D. J., Strahl, R. & Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Optical Mater. 8, 1901429 (2020).

    Article  Google Scholar 

  19. Kim, B. H. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).

    Article  ADS  Google Scholar 

  20. Liu, Y. et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique. ACS Appl. Mater. Interfaces 9, 25506–25512 (2017).

    Article  Google Scholar 

  21. Zhao, J. Y. et al. Full-color laser displays based on organic printed microlaser arrays. Nat. Commun. 10, 870 (2019).

    Article  ADS  Google Scholar 

  22. Keum, H. et al. Photoresist contact patterning of quantum dot films. ACS Nano 12, 10024–10031 (2018).

    Article  Google Scholar 

  23. Park, J. S. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16, 6946–6953 (2016).

    Article  ADS  Google Scholar 

  24. Yang, J. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat. Commun. 11, 2874 (2020).

    Article  ADS  Google Scholar 

  25. Cho, H. et al. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: effect of surface energy on device performance. ACS Appl. Mater. Interfaces 7, 10828–10833 (2015).

    Article  Google Scholar 

  26. Choi, M. K. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  ADS  Google Scholar 

  27. Kim, B. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 10, 4920–4925 (2016).

    Article  Google Scholar 

  28. Linghu, C., Zhang, S., Wang, C. & Song, J. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flex. Electron. 2, 26 (2018).

    Article  Google Scholar 

  29. Li, X., Hu, B., Du, Z., Wu, Y. & Jiang, L. Asymmetric wettability interfaces induced a large-area quantum dot microstructure toward high-resolution quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 11, 28520–28526 (2019).

    Article  Google Scholar 

  30. Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 11, 3040 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  31. Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).

    Article  ADS  Google Scholar 

  32. Bourvon, H. et al. Langmuir–Schaeffer monolayers of colloidal nanocrystals for cost-efficient quantum dot light-emitting diodes. Adv. Mater. 24, 4414–4418 (2012).

    Article  Google Scholar 

  33. Lambert, K. et al. Langmuir−Schaefer deposition of quantum dot multilayers. Langmuir 26, 7732–7736 (2010).

    Article  Google Scholar 

  34. Ariga, K. Don’t forget Langmuir–Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 36, 7158–7180 (2020).

    Article  Google Scholar 

  35. Lunz, M. et al. Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers. Phys. Rev. B 81, 205316 (2010).

    Article  ADS  Google Scholar 

  36. Lunz, M. et al. Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions. Phys. Rev. B 83, 115423 (2011).

    Article  ADS  Google Scholar 

  37. Shen, T. L. et al. Coherent Förster resonance energy transfer: a new paradigm for electrically driven quantum dot random lasers. Sci. Adv. 6, 1705 (2020).

    Article  ADS  Google Scholar 

  38. Zhu, Y. B. et al. Light-emitting memristors for optoelectronic artificial efferent nerve. Nano Lett. 21, 6087–6094 (2021).

    Article  ADS  Google Scholar 

  39. Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013).

    Article  ADS  Google Scholar 

  40. Zhang, H., Su, Q. & Chen, S. Suppressing Förster resonance energy transfer in close‐packed quantum‐dot thin film: toward efficient quantum‐dot light‐emitting diodes with external quantum efficiency over 21.6%. Adv. Optical Mater. 8, 1902092 (2020).

    Article  Google Scholar 

  41. Song, J. J. et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29, 1808377 (2019).

    Article  Google Scholar 

  42. Kim, T. H. et al. Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nat. Commun. 4, 2637 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62075043) and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ126).

Author information

Authors and Affiliations

Authors

Contributions

F.L. conceived the core strategy of the patterning method and designed the experiment. T.M., Y. Zheng., D.Z. and Y. Zhu. carried out the patterning experiment and film characterizations. T.M., Z.X., S.J., J.J., X.C. and H.G. fabricated the QLEDs and analysed their performance. F.L., H.H., K.Y., T.G. and L.Q. discussed the experimental results. F.L., T.M. and H.H. prepared the manuscript. F.L., J.F. and L.Q. revised the manuscript.

Corresponding authors

Correspondence to Fushan Li or Lei Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Zhaojun Liu, Manuel Alejandro Triana Valencia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, T., Zheng, Y., Zhao, D. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022). https://doi.org/10.1038/s41566-022-00960-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00960-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing