Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-efficiency coherent microwave-to-optics conversion via off-resonant scattering

Abstract

Quantum transducers that can convert quantum signals from the microwave to the optical domain are a crucial optical interface for quantum information technology. Coherent microwave-to-optics conversions have been realized with various physical platforms, but all of them are limited to low efficiencies of less than 50%—the threshold of the no-cloning quantum regime. Here we report coherent microwave-to-optics transduction using Rydberg atoms and off-resonant scattering technique with an efficiency of 82 ± 2% and a bandwidth of about 1 MHz. The high conversion efficiency is maintained for microwave photons ranging from thousands to about 50, suggesting that our transduction is readily applicable to the single-photon level. Without requiring cavities or aggressive cooling for the quantum ground states, our results would push atomic transducers closer to practical applications in quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical analysis of microwave-to-optics conversion via off-resonant scattering.
Fig. 2: Experimental demonstration of microwave-to-optics conversion in cold atoms.
Fig. 3: Conversion efficiency and bandwidth via off-resonant scattering.

Similar content being viewed by others

Data availability

The data supporting the results in this study are available within the paper and Supplementary Information. The raw datasets generated during the study are too large to be publicly shared, but they are available from the corresponding authors upon reasonable request.

Code availability

The codes used for the theoretical simulations are available from the corresponding authors upon reasonable request.

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Google Scholar 

  4. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  Google Scholar 

  5. Xiang, Z. L. et al. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013).

    Article  ADS  Google Scholar 

  6. Lambert, N. J. et al. Coherent conversion between microwave and optical photons—an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).

    Article  Google Scholar 

  7. Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).

    Article  ADS  Google Scholar 

  8. Wolf, M. M., Pérez-García, D. & Giedke, G. Quantum capacities of bosonic channels. Phys. Rev. Lett. 98, 130501 (2007).

    Article  ADS  Google Scholar 

  9. Grosshans, F. & Grangier, P. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Article  ADS  Google Scholar 

  11. Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article  ADS  Google Scholar 

  12. Witmer, J. D. et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci. Technol. 5, 034004 (2020).

    Article  ADS  Google Scholar 

  13. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  Google Scholar 

  14. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article  Google Scholar 

  15. Higginbotham, A. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Article  Google Scholar 

  16. Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2019).

    Article  Google Scholar 

  17. Wu, M. et al. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. Phys. Rev. Appl. 13, 014027 (2020).

    Article  ADS  Google Scholar 

  18. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article  ADS  Google Scholar 

  19. Williamson, L. A., Chen, Y. H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    Article  ADS  Google Scholar 

  20. O’Brien, C. et al. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    Article  ADS  Google Scholar 

  21. Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article  ADS  Google Scholar 

  22. Welinski, S. et al. Electron spin coherence in optically excited states of rare-earth ions for microwave to optical quantum transducers. Phys. Rev. Lett. 122, 247401 (2019).

    Article  ADS  Google Scholar 

  23. Gonzalvo, F. X. et al. Cavity-enhanced Raman heterodyne spectroscopy in Er3+: Y2SiO5 for microwave to optical signal conversion. Phys. Rev. A 100, 033807 (2019).

    Article  ADS  Google Scholar 

  24. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article  ADS  Google Scholar 

  25. Kiffner, M. et al. Two-way interconversion of millimeter-wave and optical fields in Rydberg gases. New J. Phys. 18, 093030 (2016).

    Article  ADS  Google Scholar 

  26. Han, J. et al. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms. Phys. Rev. Lett. 120, 093201 (2018).

    Article  ADS  Google Scholar 

  27. Covey, J. P. et al. Microwave-to-optical conversion via four-wave mixing in a cold ytterbium ensemble. Phys. Rev. A 100, 012307 (2019).

    Article  ADS  Google Scholar 

  28. Zibrov, A. S., Matsko, A. B. & Scully, M. O. Four-wave mixing of optical and microwave fields. Phys. Rev. Lett. 89, 103601 (2002).

    Article  ADS  Google Scholar 

  29. Petrosyan, D. et al. Microwave to optical conversion with atoms on a superconducting chip. New J. Phys. 21, 073033 (2020).

    Article  Google Scholar 

  30. Petrosyan, D. et al. Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79, 040304(R) (2009).

    Article  ADS  Google Scholar 

  31. Vogt, T. et al. Efficient microwave-to-optical conversion using Rydberg atoms. Phys. Rev. A 99, 023832 (2019).

    Article  ADS  Google Scholar 

  32. Merriam, A. et al. Efficient nonlinear frequency conversion in an all-resonant double-Λ system. Phys. Rev. Lett. 84, 5308 (2000).

    Article  ADS  Google Scholar 

  33. Jain, M. et al. Efficient nonlinear frequency conversion with maximal atomic coherence. Phys. Rev. Lett. 77, 4326 (1996).

    Article  ADS  Google Scholar 

  34. Wang, Y. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photon. 13, 346–351 (2019).

    Article  Google Scholar 

  35. Liao, K. Y. et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A 101, 053432 (2020).

    Article  ADS  Google Scholar 

  36. Šibalić, N. et al. ARC: an open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Comm. 220, 319–331 (2017).

    Article  ADS  MATH  Google Scholar 

  37. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  38. Hogan, S. D. et al. Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide. Phys. Rev. Lett. 108, 063004 (2012).

    Article  ADS  Google Scholar 

  39. Hermann-Avigliano, C. et al. Long coherence times for Rydberg qubits on a superconducting atom chip. Phys. Rev. A 90, 040502 (2014).

    Article  ADS  Google Scholar 

  40. Morgan, A. A. & Hogan, S. D. Coupling Rydberg atoms to microwave fields in a superconducting coplanar waveguide resonator. Phys. Rev. Lett. 124, 193604 (2020).

    Article  ADS  Google Scholar 

  41. Kaiser, M. et al. Cavity driven Rabi oscillations between Rydberg states of atoms trapped on a superconducting atom chip. Preprint at https://arxiv.org/abs/2105.05188 (2021).

  42. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    Article  ADS  Google Scholar 

  43. Gard, B. et al. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A 96, 013833 (2017).

    Article  ADS  Google Scholar 

  44. Mirhosseini, M. et al. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  ADS  Google Scholar 

  45. Mack, M. et al. Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency. Phys. Rev. A 83, 052515 (2011).

    Article  ADS  Google Scholar 

  46. Gordon, J. A. et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms. Appl. Phys. Lett. 105, 024104 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. Vogt, W. Li, J. Han and W. Li for useful discussions. The work was supported by the Key Area Research and Development Program of Guangdong province (grant nos. 2019B030330001 (S.-L.Z., H.Y., K.-Y.L. and X.-D.Z.) and 2020B0301030008 (H.Y.)); the National Natural Science Foundation of China (grant nos. 91636218 (S.-L.Z., H.Y. and K.-Y.L.), 11804104 (K.-Y.L.), 11822403 (H.Y.), 61875060 (X.-D.Z.), U1801661 (S.-L.Z. and H.Y.) and U20A2074 (H.Y.)); the Key Project of Science and Technology of Guangzhou (grant nos. 201902020002 (X.-D.Z.) and 2019050001 (S.-L.Z. and H.Y.)); and the National Key Research and Development Program of China (grant no. 2020YFA0309500 (Z.-X.Z.)).

Author information

Authors and Affiliations

Authors

Contributions

K.-Y.L. and H.Y. designed the experiment. H.-T.T., Z.-X.Z, X.-H.L. and S.-Z.Y. carried out the experiments. H.-T.T., K.-Y.L., S.-Y.Z. and X.-D.Z. conducted the raw-data analysis. K.-Y.L., H.Y. and S.-L.Z. wrote the paper, and all the authors discussed the paper’s contents. H.Y. and S.-L.Z. supervised the project.

Corresponding authors

Correspondence to Kai-Yu Liao, Hui Yan or Shi-Liang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jacob Covey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VI and Figs. 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, HT., Liao, KY., Zhang, ZX. et al. High-efficiency coherent microwave-to-optics conversion via off-resonant scattering. Nat. Photon. 16, 291–296 (2022). https://doi.org/10.1038/s41566-022-00959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00959-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing