Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions

Abstract

Microscopic imaging in three dimensions enables numerous biological and clinical applications. However, high-resolution optical imaging preserved in a relatively large depth range is hampered by the rapid spread of tightly confined light due to diffraction. Here, we show that a particular disposition of light illumination and collection paths liberates optical imaging from the restrictions imposed by diffraction. This arrangement, realized by metasurfaces, decouples lateral resolution from the depth of focus by establishing a one-to-one correspondence (bijection) along a focal line between the incident and collected light. Implementing this approach in optical coherence tomography, we demonstrate tissue imaging at a wavelength of 1.3 µm with ~3.2 µm lateral resolution, maintained nearly intact over a 1.25 mm depth of focus, with no additional acquisition or computational burden. This method, termed bijective illumination collection imaging, is general and might be adapted across various existing imaging modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BICI concept.
Fig. 2: Analytic PSF comparison of BICI with approaches using common path Gaussian and Bessel beams.
Fig. 3: BICI implementation.
Fig. 4: Characterization of the BICI PSF.
Fig. 5: BICI resolution and depth-of-focus measurement.
Fig. 6: Tissue imaging comparison of BICI and a conventional approach.

Similar content being viewed by others

Data availability

All data generated and analysed are included in the paper and its supplementary information. The imaging data presented in Fig. 6 are available at https://figshare.com/articles/figure/Fig_6e_TIF/17124062.

Code availability

All custom codes or algorithms used to generate results that are reported in this manuscript are available from the corresponding authors upon reasonable request.

References

  1. Stephens, D. J. & Allan, V. J. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003).

    Article  ADS  Google Scholar 

  2. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  3. Beaulieu, D. R., Davison, I. G., Kılıç, K., Bifano, T. G. & Mertz, J. Simultaneous multiplane imaging with reverberation two-photon microscopy. Nat. Methods 17, 283–286 (2020).

    Article  Google Scholar 

  4. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  Google Scholar 

  5. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  6. Fujimoto, J. G. et al. Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1, 970–972 (1995).

    Article  Google Scholar 

  7. Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Article  Google Scholar 

  8. Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003).

    Article  Google Scholar 

  9. Vakoc, B. J., Fukumura, D., Jain, R. K. & Bouma, B. E. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat. Rev. Cancer 12, 363–368 (2012).

    Article  Google Scholar 

  10. Zhou, K. C., Qian, R., Degan, S., Farsiu, S. & Izatt, J. A. Optical coherence refraction tomography. Nat. Photonics 13, 794–802 (2019).

    Article  ADS  Google Scholar 

  11. Curatolo, A. et al. Quantifying the influence of Bessel beams on image quality in optical coherence tomography. Sci. Rep. 6, 23483 (2016).

    Article  ADS  Google Scholar 

  12. Zhang, M., Ren, Z. & Yu, P. Improve depth of field of optical coherence tomography using finite energy Airy beam. Opt. Lett. 44, 3158–3161 (2019).

    Article  ADS  Google Scholar 

  13. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  14. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  15. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  16. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  Google Scholar 

  17. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article  Google Scholar 

  18. Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    Article  ADS  Google Scholar 

  19. Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    Article  ADS  Google Scholar 

  20. Gutierrez-Vega, J. C., Iturbe-Castillo, M. D. & Chavez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 25, 1493–1495 (2000).

    Article  ADS  Google Scholar 

  21. Bandres, M. A., Gutierrez-Vega, J. C. & Chavez-Cerda, S. Parabolic nondiffracting optical wave fields. Opt. Lett. 29, 44–46 (2004).

    Article  ADS  Google Scholar 

  22. Lopez-Mariscal, C., Bandres, M. A., Gutierrez-Vega, J. C. & Chavez-Cerda, S. Observation of parabolic nondiffracting optical fields. Opt. Express 13, 2364–2369 (2005).

    Article  ADS  Google Scholar 

  23. Fahrbach, F. O., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010).

    Article  ADS  Google Scholar 

  24. Webb, R. H. Confocal optical microscopy. Rep. Prog. Phys. 59, 427–471 (1996).

    Article  ADS  Google Scholar 

  25. Stelzer, E. H. K. & Steffen, L. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt. Commun. 111, 536–547 (1994).

    Article  ADS  Google Scholar 

  26. Born, M. & Wolf, E. Principles of Optics (Pergamon, 1970)

  27. Blatter, C. et al. Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt. Express 19, 12141–12155 (2011).

    Article  ADS  Google Scholar 

  28. Lorenser, D., Christian Singe, C., Curatolo, A. & Sampson, D. D. Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography. Opt. Lett. 39, 548–551 (2014).

    Article  ADS  Google Scholar 

  29. Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4, 466–470 (2010).

    Article  ADS  Google Scholar 

  30. Khorasaninejad, M. & Crozier, K. B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5, 5386 (2014).

    Article  ADS  Google Scholar 

  31. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  ADS  Google Scholar 

  32. Khorasaninejad, M. & Capasso, F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709–6715 (2015).

    Article  ADS  Google Scholar 

  33. Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

    Article  ADS  Google Scholar 

  34. Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16, 3732–3737 (2016).

    Article  ADS  Google Scholar 

  35. Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017).

    Article  ADS  Google Scholar 

  36. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

    Article  ADS  Google Scholar 

  37. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  ADS  Google Scholar 

  38. Yun, S. H., Tearney, G. J., de Boer, J. F. & Bouma, B. E. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt. Express 12, 4822–4828 (2004).

    Article  ADS  Google Scholar 

  39. Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006).

    Article  Google Scholar 

  40. Huang, L., Whitehead, J., Colburn, S. & Majumdar, A. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photonics Res. 8, 1613–1623 (2020).

    Article  Google Scholar 

  41. Bayati, E. et al. Inverse designed metalenses with extended depth of focus. ACS Photonics 7, 873–878 (2020).

    Article  Google Scholar 

  42. Colburn, S. & Majumdar, A. Simultaneous achromatic and varifocal imaging with quartic metasurfaces in the visible. ACS Photonics 7, 120–127 (2020).

    Article  Google Scholar 

  43. Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, 2114 (2018).

    Article  ADS  Google Scholar 

  44. Ralston, T. S., Marks, D. L., Carney, P. S. & Boppart, S. A. Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007).

    Article  Google Scholar 

  45. Liu, L. et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014 (2011).

    Article  ADS  Google Scholar 

  46. Yuan, W., Brown, R., Mitzner, W., Yarmus, L. & Li, X. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat. Commun. 8, 1531 (2017).

    Article  ADS  Google Scholar 

  47. Desjardins, A. E. et al. Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction. Opt. Express 15, 6200–6209 (2007).

    Article  ADS  Google Scholar 

  48. Klein, T., Raphael, A., Wolfgang, W., Tom, P. & Huber, R. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT. Biomed. Opt. Express 4, 619–634 (2013).

    Article  Google Scholar 

  49. Zhao, Y. et al. Dual-axis optical coherence tomography for deep tissue imaging. Opt. Lett. 42, 2302–2305 (2017).

    Article  ADS  Google Scholar 

  50. Cheng, X. et al. Comparing the fundamental imaging depth limit of two-photon, three-photon, and non-degenerate two-photon microscopy. Opt. Lett. 45, 2934–2937 (2020).

    Article  ADS  Google Scholar 

  51. Wang, C., Qiao, L., Mao, Z., Cheng, Y. & Xu, Z. Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation. J. Opt. Soc. Am. B 25, 976–982 (2008).

    Article  ADS  Google Scholar 

  52. Kobat, D., Zhu, G. & Xu, C. Background reduction with two-color two-beam multiphoton excitation. In Proc. Biomedical Optics paper BMF6 (Optical Society of America, 2008); https://doi.org/10.1364/biomed.2008.bmf6

  53. Liu, J. T. C. et al. Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia. J. Biomed. Opt. 11, 054019 (2006).

    Article  ADS  Google Scholar 

  54. Hell, S. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).

    Article  ADS  Google Scholar 

  55. Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14, 360–373 (2017).

    Article  Google Scholar 

  56. Gao, P. F., Lei, G. & Huang, C. Z. Dark-field microscopy: recent advances in accurate analysis and emerging applications. Anal. Chem. 93, 4707–4726 (2021).

    Article  Google Scholar 

  57. Schmitt, J. M., Xiang, S. H. & Yung, K. M. Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95–105 (1999).

    Article  ADS  Google Scholar 

  58. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).

    Article  ADS  Google Scholar 

  59. Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554–560 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by funding from the Department of Defense under grant no. W81XWH2010300 awarded to H.P., the Natural Sciences and Engineering Research Council of Canada under grant no. 392075 awarded to M. Pahlevani and the National Institutes of Health under grant no. 5R01HL133664 and grant no. 1R01CA255326 awarded to M.J.S. This work was performed in part at Harvard’s Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by the National Science Foundation (NSF) under NSF award no. 1541959.

Author information

Authors and Affiliations

Authors

Contributions

M. Pahlevaninezhad and H.P. conceived the design and implementation and executed the experiments. M. Pahlevani, M.J.S., B.B. and F.C. refined the methodology. M. Pahlevaninezhad performed computational analyses for metasurface design. M. Pahlevaninezhad and Y.-W.H. fabricated the metasurfaces. H.P., M. Pahlevaninezhad and M.J.S. performed ex vivo imaging and processed the imaging data. M. Pahlevaninezhad and H.P. prepared the original manuscript with contributions from F.C., M. Pahlevani, B.B. and M.J.S. The research was supervised by H.P. and F.C.

Corresponding authors

Correspondence to Federico Capasso or Hamid Pahlevaninezhad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4 and Figs. 1–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlevaninezhad, M., Huang, YW., Pahlevani, M. et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat. Photon. 16, 203–211 (2022). https://doi.org/10.1038/s41566-022-00956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00956-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing