Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically driven random lasing from a modified Fabry–Pérot laser diode

Abstract

Random lasers are intriguing devices with promising applications as light sources for imaging, sensing, super-resolution spectral analysis or complex networks engineering. Random lasers can be obtained from optically pumped dyes, optical fibres and crystals or electrically pumped semiconductor heterostructures. Semiconductor random lasers are usually fabricated by introducing scattering defects into the active layer, adding a degree of complexity to the fabrication process and losing the ease of realization potentially offered by disordered structures. The ready availability of electrically pumped random lasers, avoiding a costly fabrication approach, would boost the use of these devices in research and applications. Here we realize an incoherent semiconductor random laser by simply processing the output mirror of an off-the-shelf Fabry–Pérot laser diode via controlled laser ablation. Optical feedback provided by the intact back mirror and the ablated front mirror results in multimode random lasing with low spatial coherence and disordered angular patterns. This result constitutes a proof of principle for future ground-breaking technology developments in the field of random lasers.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The modified laser diode.
Fig. 2: Modified FP laser diode emission.
Fig. 3: Speckle contrasts of the original and modified laser diodes.
Fig. 4: Simulation results.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The MATLAB codes developed to execute the calculations presented in this paper are available from the corresponding authors upon reasonable request.

References

  1. Cao, H. Random lasers: development, features and applications. Opt. Photon. News 16, 24–29 (2005).

    ADS  Google Scholar 

  2. Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photon. 6, 355–359 (2012).

    ADS  Google Scholar 

  3. Ignesti, E. et al. A new class of optical sensors: a random laser based device. Sci. Rep. 6, 35225 (2016).

    ADS  Google Scholar 

  4. Boschetti, A. et al. Spectral super-resolution spectroscopy using a random laser. Nat. Photon. 14, 177–182 (2020).

    ADS  Google Scholar 

  5. Caselli, N., Consoli, A., Mateos Sánchez, A. & López, C. Networks of mutually coupled random lasers. Optica 8, 193–201 (2021).

    ADS  Google Scholar 

  6. Ambartsumyan, R. V., Basov, N. G., Kryukov, P. G. & Letokhov, V. S. A laser with a nonresonant feedback. IEEE J. Quantum Electron. 2, 442–446 (1966).

    ADS  Google Scholar 

  7. Ambartsumyan, R. V., Basov, N. G., Kryukov, P. G. & Letokhov, V. S. Non-resonant feedback in lasers. Prog. Quantum Electron. 1, 107–185 (1970).

    ADS  Google Scholar 

  8. Gouedard, C., Auzel, F., Migus, A., Husson, D. & Sauteret, C. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B 10, 2358–2363 (1993).

    ADS  Google Scholar 

  9. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    ADS  Google Scholar 

  10. Cao, H. et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73, 3656–3658 (1998).

    ADS  Google Scholar 

  11. Caixeiro, S., Gaio, M., Marelli, B., Omenetto, F. G. & Sapienza, R. Silk-based biocompatible random lasing. Adv. Opt. Mater. 4, 998–1003 (2016).

    Google Scholar 

  12. Azkargorta, J. et al. Random laser properties of Nd3+ crystal powders. Opt. Express 26, 11787–11803 (2018).

    ADS  Google Scholar 

  13. Song, Q. et al. Random lasing in bone tissue. Opt. Lett. 35, 1425–1427 (2010).

    ADS  Google Scholar 

  14. Wang, C.-S., Chang, T.-Y., Lin, T.-Y. & Chen, Y.-F. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 4, 6736 (2014).

    Google Scholar 

  15. Viola, I. et al. Random laser emission from a paper-based device. J. Mater. Chem. C 1, 8128–8133 (2013).

    Google Scholar 

  16. Baudouin, Q., Mercadier, N., Guarrera, V., Guerin, W. & Kaiser, R. A cold-atom random laser. Nat. Phys. 9, 357–360 (2013).

    Google Scholar 

  17. Vasileva, E. et al. Lasing from organic dye molecules embedded in transparent wood. Adv. Opt. Mater. 5, 1700057 (2017).

    Google Scholar 

  18. Sznitko, L., Mysliwiec, J. & Miniewicz, A. The role of polymers in random lasing. J. Polym. Sci. B 53, 951–974 (2015).

    Google Scholar 

  19. Ma, R., Rao, Y. J., Zhang, W. L. & Hu, B. Multimode random fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019).

    Google Scholar 

  20. Yu, S. F. Electrically pumped random lasers. J. Phys. D 48, 483001 (2015).

    Google Scholar 

  21. Schönhuber, S. et al. Random lasers for broadband directional emission. Optica 3, 1035–1038 (2016).

    ADS  Google Scholar 

  22. Liang, H. K. et al. Electrically pumped mid-infrared random lasers. Adv. Mater. 25, 6859–6863 (2013).

    Google Scholar 

  23. Zeng, Y. et al. Designer multimode localized random lasing in amorphous lattices at terahertz frequencies. ACS Photon. 3, 2453–2460 (2016).

    Google Scholar 

  24. Biasco, S. et al. Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl. 8, 43 (2019).

    ADS  Google Scholar 

  25. Yu, S. F., Yuen, C., Lau, S. P. & Lee, H. W. Zinc oxide thin-film random lasers on silicon substrate. Appl. Phys. Lett. 84, 3244–3246 (2004).

    ADS  Google Scholar 

  26. Ma, X., Chen, P., Li, D., Zhang, Y. & Yang, D. Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. Appl. Phys. Lett. 91, 251109 (2007).

    ADS  Google Scholar 

  27. Zhu, H. et al. Low-threshold electrically pumped random lasers. Adv. Mater. 22, 1877–1881 (2010).

    Google Scholar 

  28. Qiao, Q. et al. Surface plasmon enhanced electrically pumped random lasers. Nanoscale 5, 513–517 (2013).

    ADS  Google Scholar 

  29. Chu, S., Olmedo, M., Yang, Z., Kong, J. & Liu, J. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008).

    ADS  Google Scholar 

  30. Wang, C. S., Nieh, C. H., Lin, T. Y. & Chen, Y. F. Electrically driven random laser memory. Adv. Funct. Mater. 25, 4058–4063 (2015).

    Google Scholar 

  31. Ma, X. et al. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Opt. Express 17, 14426–14433 (2009).

    ADS  Google Scholar 

  32. Gao, F. et al. Electrically pumped random lasing based on an Au-ZnO nanowire Schottky junction. Nanoscale 7, 9505–9509 (2015).

    ADS  Google Scholar 

  33. Liu, X. Y., Shan, C. X., Wang, S. P., Zhang, Z. Z. & Shen, D. Z. Electrically pumped random lasers fabricated from ZnO nanowire arrays. Nanoscale 4, 2843–2846 (2012).

    ADS  Google Scholar 

  34. Huang, J. et al. ZnO p-n homojunction random laser diode based on nitrogen-doped p-type nanowires. Adv. Opt. Mater. 1, 179–185 (2013).

    ADS  Google Scholar 

  35. Leong, E. S. P., Yu, S. F. & Lau, S. P. Directional edge-emitting UV random laser diodes. Appl. Phys. Lett. 89, 221109 (2006).

    ADS  Google Scholar 

  36. Leong, E. S. P. & Yu, S. F. UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes. Adv. Mater. 18, 1685–1688 (2006).

    Google Scholar 

  37. Liang, H. K., Yu, S. F. F. & Yang, H. Y. Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Appl. Phys. Lett. 96, 101116 (2010).

    ADS  Google Scholar 

  38. Consoli, A. & López, C. Decoupling gain and feedback in coherent random lasers: experiments and simulations. Sci. Rep. 5, 16848 (2015).

    ADS  Google Scholar 

  39. Consoli, A., Soria, E., Caselli, N. & López, C. Random lasing emission tailored by femtosecond and picosecond pulsed polymer ablation. Opt. Lett. 44, 518–521 (2019).

    ADS  Google Scholar 

  40. Bonse, J., Hohm, S., Kirner, S. V., Rosenfeld, A. & Kruger, J. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).

    Google Scholar 

  41. Ata, M. S., Liu, Y. & Zhitomirsky, I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 4, 22716–22732 (2014).

    ADS  Google Scholar 

  42. Martin, M. & Cunge, G. Surface roughness generated by plasma etching processes of silicon. J. Vac. Sci. Technol. B 26, 1281 (2008).

    Google Scholar 

  43. Kurvits, J. A., Jiang, M. & Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015).

    ADS  Google Scholar 

  44. Andreasen, J. et al. Modes of random lasers. Adv. Opt. Photon. 3, 88–127 (2011).

    Google Scholar 

  45. Consoli, A., Robalino, S., Caselli, N. & Lopez, C. Spectral characterization of transverse modes in random lasers. In Proc. 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 (IEEE, 2019); https://doi.org/10.1109/CLEOE-EQEC.2019.8872935

  46. Nixon, M., Redding, B., Friesem, A. A., Cao, H. & Davidson, N. Efficient method for controlling the spatial coherence of a laser. Opt. Lett. 38, 3858–3861 (2013).

    ADS  Google Scholar 

  47. Siegman, A. E. Lasers (University Science Books, 1986).

  48. Coldren, L. A., Corzine, S. W. & Mašanović, M. L. Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

  49. Consoli, A. & Lopez, C. Emission regimes of random lasers with spatially localized feedback. Opt. Express 24, 10912–10920 (2016).

    ADS  Google Scholar 

  50. Sapienza, R. Determining random lasing action. Nat. Rev. Phys. 1, 690–695 (2019).

    Google Scholar 

  51. Cao, H., Chriki, R., Bittner, S., Friesem, A. A. & Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 1, 156–168 (2019).

    Google Scholar 

  52. Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404–3406 (2011).

    ADS  Google Scholar 

  53. Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Ciencia e Innovación through the project RTI2018-093921-B-C41 (SMOOTH).

Author information

Authors and Affiliations

Authors

Contributions

A.C. conceived the device and designed the experiments. A.C. and N.C. performed the experiments. All authors analysed the data and wrote the manuscript. C.L. supervised the project.

Corresponding authors

Correspondence to Antonio Consoli, Niccolò Caselli or Cefe López.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Diederik Wiersma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary material.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Consoli, A., Caselli, N. & López, C. Electrically driven random lasing from a modified Fabry–Pérot laser diode. Nat. Photon. 16, 219–225 (2022). https://doi.org/10.1038/s41566-021-00946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00946-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing