Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissipative Kerr solitons in semiconductor ring lasers

A Publisher Correction to this article was published on 04 April 2022

This article has been updated

Abstract

Dissipative Kerr solitons are self-organized optical waves arising from the interplay between the Kerr effect and dispersion. They can form in nonlinear microresonators by deliberately tuning the parameters of the external pump laser, which provides the parametric gain for the proliferation of an ultrastable frequency comb. These miniaturized and battery-driven microcombs have become a disruptive technology for precision metrology, broadband telecommunication and ultrafast optical ranging. Here we report the experimental observation of dissipative Kerr solitons generated in a ring cavity with a fast semiconductor gain medium. The moderate quality factor of the ring cavity is compensated by the giant resonant Kerr nonlinearity of a quantum cascade laser, which is more than a million times larger than that in Si3N4. By engineering the dispersion of the cavity, we observe the formation of bright dissipative Kerr solitons in the mid-infrared range. Two independent techniques shed light on the waveform and coherence of the solitons and confirm a reconstructed temporal width of ~3 ps. In addition, background-free 3.7 ps soliton pulses are demonstrated by optically filtering out the dispersive wave. Our results extend the spectral range of soliton microcombs to mid-infrared wavelengths and will lead to integrated, battery-driven and turnkey spectrometers in the molecular fingerprint region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissipative Kerr temporal soliton in a ring QCL.
Fig. 2: Frequency characteristics of the ring cavity and the associated soliton state.
Fig. 3: Spectral phases and waveform of QCL solitons.
Fig. 4: Extraction of solitons via optical bandpass filtering.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code used for modelling the data is available from the corresponding authors upon reasonable request.

Change history

References

  1. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  2. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

  3. Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).

  4. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  5. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  6. Matsko, A. B. et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

    Article  Google Scholar 

  7. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  8. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  9. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article  ADS  Google Scholar 

  10. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  11. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  12. Weng, W., Kaszubowska-Anandarajah, A., Liu, J., Anandarajah, P. M. & Kippenberg, T. J. Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Sci. Adv. 6, eaba2807 (2020).

    Article  ADS  Google Scholar 

  13. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

  14. Wu, L. et al. Greater than one billion Q factor for on-chip microresonators. Opt. Lett. 45, 5129–5131 (2020).

    Article  Google Scholar 

  15. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  16. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  17. Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

  18. Moille, G. et al. Dissipative Kerr solitons in a III-V microresonator. Laser Photon. Rev. 14, 2000022 (2020).

    Article  ADS  Google Scholar 

  19. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photon. 14, 57–62 (2019).

    Article  ADS  Google Scholar 

  20. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  21. Jouy, P. et al. Dual comb operation of λ ~ 8.2 μm quantum cascade laser frequency comb with 1 W optical power. Appl. Phys. Lett. 111, 141102 (2017).

    Article  ADS  Google Scholar 

  22. Hugi, A. et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 μm. Appl. Phys. Lett. 95, 061103 (2009).

    Article  ADS  Google Scholar 

  23. Friedli, P. et al. Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett. 102, 222104 (2013).

    Article  ADS  Google Scholar 

  24. Opačak, N., Cin, S. D., Hillbrand, J. & Schwarz, B. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett. 127, 093902 (2021).

    Article  ADS  Google Scholar 

  25. Cai, H., Liu, S., Lalanne, E. & Johnson, A. M. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses. Appl. Phys. Lett. 106, 051102 (2015).

    Article  ADS  Google Scholar 

  26. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article  ADS  Google Scholar 

  27. Singleton, M., Jouy, P., Beck, M. & Faist, J. Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica 5, 948–953 (2018).

    Article  Google Scholar 

  28. Khurgin, J. B., Dikmelik, Y., Hugi, A. & Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 104, 081118 (2014).

    Article  ADS  Google Scholar 

  29. Schwarz, B. et al. Monolithic frequency comb platform based on interband cascade lasers and detectors. Optica 6, 890–895 (2019).

    Article  ADS  Google Scholar 

  30. Sterczewski, L. A., Frez, C., Forouhar, S., Burghoff, D. & Bagheri, M. Frequency-modulated diode laser frequency combs at 2 μm wavelength. APL Photon. 5, 076111 (2020).

    Article  ADS  Google Scholar 

  31. Kriso, C. et al. Signatures of a frequency-modulated comb in a VECSEL. Optica 8, 458–463 (2021).

    Article  Google Scholar 

  32. Burghoff, D. Unraveling the origin of frequency modulated combs using active cavity mean-field theory. Optica 7, 1781–1787 (2020).

    Article  Google Scholar 

  33. Meng, B. et al. Mid-infrared frequency comb from a ring quantum cascade laser. Optica 7, 162–167 (2020).

    Article  Google Scholar 

  34. Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360–364 (2020).

    Article  ADS  Google Scholar 

  35. Columbo, L. et al. Unifying frequency combs in active and passive cavities: temporal solitons in externally driven ring lasers. Phys. Rev. Lett. 126, 173903 (2021).

    Article  ADS  Google Scholar 

  36. D’Angelo, E. J. et al. Spatiotemporal dynamics of lasers in the presence of an imperfect O(2) symmetry. Phys. Rev. Lett. 68, 3702–3705 (1992).

    Article  ADS  Google Scholar 

  37. Beck, M. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2001).

    Article  ADS  Google Scholar 

  38. Bidaux, Y. et al. Plasmon-enhanced waveguide for dispersion compensation in mid-infrared quantum cascade laser frequency combs. Opt. Lett. 42, 1604–1607 (2017).

    Article  Google Scholar 

  39. Sorel, M. et al. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model. IEEE J. Quantum Electron. 39, 1187–1195 (2003).

    Article  ADS  Google Scholar 

  40. Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    Article  ADS  Google Scholar 

  41. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt. Express 23, 1190–1202 (2015).

    Article  Google Scholar 

  43. Cappelli, F. et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nat. Photon. 13, 562–568 (2019).

    Article  ADS  Google Scholar 

  44. Han, Z., Ren, D. & Burghoff, D. Sensitivity of SWIFT spectroscopy. Opt. Express 28, 6002–6017 (2020).

    Article  Google Scholar 

  45. Hillbrand, J. et al. In-phase and anti-phase synchronization in a laser frequency comb. Phys. Rev. Lett. 124, 023901 (2020).

  46. Hillbrand, J. et al. Mode-locked short pulses from an 8 μm wavelength semiconductor laser. Nat. Commun. 11, 5788 (2020).

  47. Sterczewski, L. A., Westberg, J. & Wysocki, G. Computational coherent averaging for free-running dual-comb spectroscopy. Opt. Express 27, 23875–23893 (2019).

    Article  ADS  Google Scholar 

  48. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  49. Wacker, A., Lindskog, M. & Winge, D. Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions. IEEE J. Sel. Top. Quantum Electron. 19, 1200611 (2013).

    Article  Google Scholar 

  50. Columbo, L., Barbieri, S., Sirtori, C. & Brambilla, M. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking. Opt. Express 26, 2829–2847 (2018).

    Article  ADS  Google Scholar 

  51. Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).

  52. Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

  53. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

    Article  ADS  Google Scholar 

  54. Shi, W. et al. Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon. Opt. Express 21, 6733–6738 (2013).

    Article  ADS  Google Scholar 

  55. Magden, E. S. et al. Transmissive silicon photonic dichroic filters with spectrally selective waveguides. Nat. Commun. 9, 3009 (2018).

    Article  ADS  Google Scholar 

  56. Rafailov, E. U., Cataluna, M. A. & Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photon. 1, 395–401 (2007).

    Article  ADS  Google Scholar 

  57. Auth, D., Liu, S., Norman, J., Bowers, J. E. & Breuer, S. Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width. Opt. Express 27, 27256–27266 (2019).

    Article  ADS  Google Scholar 

  58. Hofstetter, D. & Faist, J. Measurement of semiconductor laser gain and dispersion curves utilizing Fourier transforms of the emission spectra. IEEE Photon. Technol. Lett. 11, 1372–1374 (1999).

    Article  ADS  Google Scholar 

  59. Wolf, J. M. Quantum Cascade Laser: From 3 to 26μm. PhD thesis, ETH Zürich (2017).

Download references

Acknowledgements

We thank F. Dalmagioni for assisting in performing the simulations shown in Supplementary Section IX. We acknowledge financial support from the Swiss National Science Foundation and Innosuisse in the scope of the CombTrace (no. 20B2-1_176584/1) project and Qombs Project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820419. We thank Z. Wang for support with the high-reflection coatings of the reference Fabry–Pérot QCLs and M. Bertrand for initial help with device characterization.

Author information

Authors and Affiliations

Authors

Contributions

B.M. initiated the project as well as processed the devices and performed the initial characterization. M.S. and B.M. performed the SWIFTS measurement. J.H. performed the dual-comb characterization. M.F. provided the non-equilibrium Green’s function and LLE simulations. M.B. grew the QCL wafer. J.H., B.M., M.F and J.F. wrote the manuscript and Supplementary Information. J.F. supervised the project. All the authors contributed to analyse and interpret the results.

Corresponding authors

Correspondence to Bo Meng or Jérôme Faist.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Federico Capasso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–XII and Figs. 1–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, B., Singleton, M., Hillbrand, J. et al. Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142–147 (2022). https://doi.org/10.1038/s41566-021-00927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00927-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing