Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically tunable nonlinear polaritonic metasurface

Abstract

Nonlinear polaritonic metasurfaces created by the coupling of intersubband nonlinearities in semiconductor heterostructures with optical modes in nanoresonators have recently demonstrated efficient frequency mixings at very low pumping intensities of the order of a few tens of kilowatts per square centimetre. In these subwavelength structures, the efficiency, spectral bandwidth and local nonlinear phase of wave mixing do not depend on phase matching but only on the nonlinear response of the constituent meta-atoms. We exploit this property to demonstrate an electrically tunable nonlinear metasurface that combines a plasmonic nanocavity and a quantum-engineered semiconductor heterostructure, in which the magnitude and phase of the local nonlinear responses are controlled by a bias voltage through the quantum-confined Stark effect. We demonstrate spectral tuning, dynamic intensity modulation and dynamic beam manipulation for second-harmonic generation. Our work suggests a route for electrically reconfigurable flat nonlinear optical elements with versatile functionalities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Electrically tunable nonlinear polaritonic metasurface.
Fig. 2: Numerical simulations and linear characterization of the metasurface.
Fig. 3: Nonlinear characterization of the electrically tunable metasurface.
Fig. 4: Dynamic nonlinear beam manipulations.

Data availability

All the relevant data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All the relevant computing codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Google Scholar 

  2. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    ADS  Google Scholar 

  3. He, Q., Sun, S. & Zhou, L. Tunable/reconfigurable metasurfaces: physics and applications. Research 2019, 1849272 (2019).

    Google Scholar 

  4. Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Google Scholar 

  5. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    ADS  Google Scholar 

  6. Krasnok, A., Tymchenko, M. & Alu, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Google Scholar 

  7. Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).

    ADS  Google Scholar 

  8. Nookala, N. et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 3, 283–288 (2016).

    ADS  Google Scholar 

  9. Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

    ADS  Google Scholar 

  10. Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).

    ADS  Google Scholar 

  11. Dasgupta, A., Gao, J. & Yang, X. D. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Lett. 19, 6511–6516 (2019).

    ADS  Google Scholar 

  12. Reineke, B. et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett. 19, 6585–6591 (2019).

    ADS  Google Scholar 

  13. Schlickriede, C. et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett. 20, 4370–4376 (2020).

    ADS  Google Scholar 

  14. Walter, F., Li, G. X., Meier, C., Zhang, S. & Zentgraf, T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett. 17, 3171–3175 (2017).

    ADS  Google Scholar 

  15. Ma, M. L. et al. Optical information multiplexing with nonlinear coding metasurfaces. Laser Photon. Rev. 13, 1900045 (2019).

    ADS  Google Scholar 

  16. Tang, Y. T. et al. Nonlinear vectorial metasurface for optical encryption. Phys. Rev. Appl. 12, 024028 (2019).

    ADS  Google Scholar 

  17. Zheng, P. X. et al. Metasurface-based key for computational imaging encryption. Sci. Adv. 7, eabg0363 (2021).

    ADS  Google Scholar 

  18. Lu, C. C. et al. An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light Sci. Appl. 4, e302 (2015).

    Google Scholar 

  19. Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

    ADS  Google Scholar 

  20. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    ADS  Google Scholar 

  21. Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015).

    ADS  Google Scholar 

  22. Segal, N., Keren-Zur, S., Hendler, N. & Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photon. 9, 180–184 (2015).

    ADS  Google Scholar 

  23. Yang, Y. M. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    ADS  Google Scholar 

  24. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

    ADS  Google Scholar 

  25. Liu, S. et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun. 9, 2507 (2018).

    ADS  Google Scholar 

  26. Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    Google Scholar 

  27. Cai, W. S., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011).

    ADS  Google Scholar 

  28. Ding, W., Zhou, L. C. & Chou, S. Y. Enhancement and electric charge-assisted tuning of nonlinear light generation in bipolar plasmonics. Nano Lett. 14, 2822–2830 (2014).

    ADS  Google Scholar 

  29. Kang, L. et al. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun. 5, 4680 (2014).

    ADS  Google Scholar 

  30. Lee, K. T. et al. Electrically biased silicon metasurfaces with magnetic Mie resonance for tunable harmonic generation of light. ACS Photon. 6, 2663–2670 (2019).

    Google Scholar 

  31. Gomez-Diaz, J. S., Tymchenko, M., Lee, J., Belkin, M. A. & Alu, A. Nonlinear processes in multi-quantum-well plasmonic metasurfaces: electromagnetic response, saturation effects, limits, and potentials. Phys. Rev. B 92, 125429 (2015).

    ADS  Google Scholar 

  32. Lee, J. et al. Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response. Adv. Opt. Mater. 4, 664–670 (2016).

    Google Scholar 

  33. Nookala, N. et al. Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane. Appl. Phys. B 124, 132 (2018).

    ADS  Google Scholar 

  34. Yu, J. et al. Third-harmonic generation from plasmonic metasurfaces coupled to intersubband transitions. Adv. Opt. Mater. 7, 1801510 (2019).

    Google Scholar 

  35. Capasso, F., Sirtori, C. & Cho, A. Y. Coupled-quantum-well semiconductors with giant electric-field tunable nonlinear-optical properties in the infrared. IEEE J. Quantum Electron. 30, 1313–1326 (1994).

    ADS  Google Scholar 

  36. Rosencher, E. et al. Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996).

    ADS  Google Scholar 

  37. Sirtori, C., Capasso, F., Sivco, D. L., Hutchinson, A. L. & Cho, A. Y. Resonant Stark tuning of 2nd-order susceptibility in coupled quantum-wells. Appl. Phys. Lett. 60, 151–153 (1992).

    ADS  Google Scholar 

  38. Todorov, Y. et al. Ultrastrong light-matter coupling regime with polariton dots. Phys. Rev. Lett. 105, 196402 (2010).

    ADS  Google Scholar 

  39. Balanis, C. A. Advanced Engineering Electromagnetics (Wiley, 1989).

  40. Wolf, O. et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat. Commun. 6, 7667 (2015).

    ADS  Google Scholar 

  41. Chen, S. M., Li, K. F., Li, G. X., Cheah, K. W. & Zhang, S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light Sci. Appl. 8, 17 (2019).

    ADS  Google Scholar 

  42. Harvey, J. E. & Pfisterer, R. N. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Opt. Eng. 58, 087105 (2019).

    ADS  Google Scholar 

  43. Wolf, O. et al. Enhanced optical nonlinearities in the near-infrared using iii-nitride heterostructures coupled to metamaterials. Appl. Phys. Lett. 107, 151108 (2015).

    ADS  Google Scholar 

  44. Qian, H. L. et al. Large optical nonlinearity enabled by coupled metallic quantum wells. Light Sci. Appl. 8, 13 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Basic Science Research Program and Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) under grant nos. 2019R1A2C4070623, 2020R1A4A3079834 and 2018M3A7B4070029 funded by the Korean Government (MSIT). Technical University of Munich group acknowledges support from the DARPA’s Nascent Light-Matter Interactions program. This paper is dedicated to the memory of Prof. Markus-Christian Amann who supervised the growth of the semiconductor heterostructure used in this study. Prof. Amann passed away unexpectedly on November 23, 2018.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. designed the semiconductor heterostructure, calculated the physical parameters, fabricated the device and performed all the experimental measurements and simulations. F.D., G.B., M.-C.A. and M.A.B. performed the semiconductor heterostructure growth. S.P. assisted with the meta-atom design and simulations. I.H. and D.K. assisted with the device fabrication and measurement. J.L. conceived and developed the concept and directed the research. M.A.B., J.Y. and J.L. wrote the manuscript.

Corresponding author

Correspondence to Jongwon Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Yuanmu Yang, Shreyas Shah and Maxim Shcherbakov for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Park, S., Hwang, I. et al. Electrically tunable nonlinear polaritonic metasurface. Nat. Photon. 16, 72–78 (2022). https://doi.org/10.1038/s41566-021-00923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00923-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing