Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic on–off switching of a plasmonic laser

Abstract

The nanoscale mode volumes of surface plasmon polaritons have enabled plasmonic lasers and condensates with ultrafast operation1,2,3,4. Most plasmonic lasers are based on noble metals, rendering the optical mode structure inert to external fields. Here we demonstrate active magnetic-field control over lasing in a periodic array of Co/Pt multilayer nanodots immersed in an IR-140 dye solution. We exploit the magnetic nature of the nanoparticles combined with mode tailoring to control the lasing action. Under circularly polarized excitation, angle-resolved photoluminescence measurements reveal a transition between the lasing action and non-lasing emission as the nanodot magnetization is reversed. Our results introduce magnetization as a means of externally controlling plasmonic nanolasers, complementary to modulation by excitation5, gain medium6,7 or substrate8. Further, the results show how the effects of magnetization on light that are inherently weak can be observed in the lasing regime, inspiring studies of topological photonics9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Magnetic-field control of plasmonic lasing in a square array of Co/Pt nanodots.
Fig. 2: Analysis of the lasing mode for a square Co/Pt nanodot array.
Fig. 3: Chiral modes emerging in a square lattice of Co/Pt nanodots.
Fig. 4: Magnetic-field control of plasmonic lasing in rectangular arrays of Co/Pt nanodots.

Data availability

Source data are provided with this paper. All other data from this work are available from the corresponding authors upon reasonable request.

References

  1. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  2. Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photon. 8, 908–918 (2014).

    Article  ADS  Google Scholar 

  3. Wang, D., Wang, W., Knudson, M. P., Schatz, G. C. & Odom, T. W. Structural engineering in plasmon nanolasers. Chem. Rev. 118, 2865–2881 (2018).

    Article  Google Scholar 

  4. Hakala, T. K. et al. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 14, 739 (2018).

    Article  Google Scholar 

  5. Knudson, M. P. et al. Polarization-dependent lasing behavior from low-symmetry nanocavity arrays. ACS Nano 13, 7435–7441 (2019).

    Article  Google Scholar 

  6. Yang, A. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 6939 (2015).

    Article  ADS  Google Scholar 

  7. Taskinen, J. M. et al. All-optical emission control and lasing in plasmonic lattices. ACS Photonics 7, 2850–2858 (2020).

    Article  Google Scholar 

  8. Wang, D. et al. Stretchable nanolasing from hybrid quadrupole plasmons. Nano Lett. 18, 4549–4555 (2018).

    Article  ADS  Google Scholar 

  9. Haldane, F. D. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  10. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article  ADS  Google Scholar 

  11. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  12. Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).

    Article  ADS  Google Scholar 

  13. Schokker, A. H. & Koenderink, A. F. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 3, 686–693 (2016).

    Article  Google Scholar 

  14. Wang, D. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 12, 889–894 (2017).

    Article  ADS  Google Scholar 

  15. Ramezani, M. et al. Plasmon-exciton-polariton lasing. Optica 4, 31–37 (2017).

    Article  ADS  Google Scholar 

  16. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    Article  ADS  Google Scholar 

  17. Pourjamal, S. et al. Lasing in Ni nanodisk arrays. ACS Nano 13, 5686–5692 (2019).

    Article  Google Scholar 

  18. Maccaferri, N. et al. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 6, 6150 (2015).

    Article  ADS  Google Scholar 

  19. Freire-Fernández, F., Mansell, R. & van Dijken, S. Magnetoplasmonic properties of perpendicularly magnetized [Co/Pt]N nanodots. Phys. Rev. B 101, 054416 (2020).

    Article  ADS  Google Scholar 

  20. Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

    Article  ADS  Google Scholar 

  21. Guan, J. et al. Quantum dot-plasmon lasing with controlled polarization patterns. ACS Nano 14, 3426–3433 (2020).

    Article  Google Scholar 

  22. Lawley, K. P. Advances in Chemical Physics Vol. 42 (John Wiley & Sons, 1980).

  23. Pineider, F. et al. Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett. 13, 4785–4789 (2013).

    Article  ADS  Google Scholar 

  24. Kataja, M., Pourjamal, S. & van Dijken, S. Magnetic circular dichroism of non-local surface lattice resonances in magnetic nanoparticle arrays. Opt. Express 24, 3562–3571 (2016).

    Google Scholar 

  25. Vedmedenko, E. Y. et al. The 2020 magnetism roadmap. J. Phys. D: Appl. Phys. 53, 453001 (2020).

    Article  Google Scholar 

  26. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  ADS  Google Scholar 

  27. Ota, Y. et al. Active topological photonics. Nanophotonics 9, 547–567 (2020).

    Article  Google Scholar 

  28. Wang, D. et al. Lasing from finite plasmonic nanoparticle lattices. ACS Photonics 7, 630–636 (2020).

    Article  Google Scholar 

  29. Kichin, G. et al. Metal–dielectric photonic crystal superlattice: 1D and 2D models and empty lattice approximation. Physica B Condens. Matter 407, 4037–4042 (2012).

  30. Guo, R., Hakala, T. K. & Törmä, P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Phys. Rev. B 95, 155423 (2017).

    Article  ADS  Google Scholar 

  31. Cherqui, C., Bourgeois, M. R., Wang, D. & Schatz, G. C. Plasmonic surface lattice resonances: theory and computation. Acc. Chem. Res. 52, 2548–2558 (2019).

    Article  Google Scholar 

  32. Daskalakis, K. S., Väkeväinen, A. I., Martikainen, J.-P., Hakala, T. K. & Törmä, P. Ultrafast pulse generation in an organic nanoparticle-array laser. Nano Lett. 18, 2658–2665 (2018).

    Article  ADS  Google Scholar 

  33. des Francs, G. C. et al. Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources. J. Opt. 18, 094005 (2016).

    Article  ADS  Google Scholar 

  34. Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (Taylor and Francis Group, 1997).

    Book  Google Scholar 

  35. Sato, K. et al. Magnetooptical spectra in Pt/Co and Pt/Fe multilayers. Jpn. J. Appl. Phys. 31, 3603–3607 (1992).

  36. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (grant nos. 303351, 307419, 316857 and 327293) and by the Centre for Quantum Engineering (CQE) at Aalto University. F.F.-F. acknowledges financial support from the Finnish Academy of Science and Letters (Vilho, Yrjö and Kalle Väisälä Fund). Lithography was performed at the OtaNano–Micronova Nanofabrication Centre, supported by Aalto University. K.S.D acknowledges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 948260). J.C. acknowledges support by the Academy of Finland under project no. 325608 (SPATUNANO). We thank J. Taskinen and N. Kuznetsov for help with the experiments. We acknowledge the computational resources provided by the Aalto Science-IT project.

Author information

Authors and Affiliations

Authors

Contributions

F.F.-F. and S.P. fabricated the samples and characterized the optical and magneto-optical response of the square and rectangular plasmonic lattices. F.F.-F. and S.P. performed the lasing experiments and K.S.D. oversaw these measurements. P.T., J.C., F.F.-F., J.-P.M. and K.A. worked on the theory analysis. P.T. and S.v.D. supervised the work. F.F.-F., P.T. and S.v.D. wrote the manuscript with inputs from all the authors.

Corresponding authors

Correspondence to Francisco Freire-Fernández, Päivi Törmä or Sebastiaan van Dijken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Vasily Temnov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20.

Source data

Source Data Fig. 1

Experimental data in Fig. 1.

Source Data Fig. 2

Experimental data in Fig. 2.

Source Data Fig. 4

Experimental data in Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freire-Fernández, F., Cuerda, J., Daskalakis, K.S. et al. Magnetic on–off switching of a plasmonic laser. Nat. Photon. 16, 27–32 (2022). https://doi.org/10.1038/s41566-021-00922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00922-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing