Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photonics and thermodynamics concepts in radiative cooling

Abstract

Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, which have inspired intense research efforts in this area. Radiative cooling is now emerging as a frontier in renewable energy research, with important potential for wide ranges of applications. In this Review, we discuss the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling. Understanding of these concepts is essential both for the demonstration of cooling effects and for the development of practical technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Daytime radiative cooling.
Fig. 2: Recent advances in daytime radiative cooling.
Fig. 3: Photonic concepts of radiative cooling in solar cells, outdoor coloured objects and textiles.
Fig. 4: Thermodynamic concepts of radiative cooling.

Similar content being viewed by others

References

  1. Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman, 1980).

  2. Howell, J. R., Siegel, R. & Mengüç, M. P. Thermal Radiation Heat Transfer (CRC, 2011).

  3. Modest, M. F. Radiative Heat Transfer (Elsevier, 2013).

  4. Catalanotti, S. et al. The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975).

    Article  ADS  Google Scholar 

  5. Bartoli, B. et al. Nocturnal and diurnal performances of selective radiators. Appl. Energy 3, 267–286 (1977).

    Article  Google Scholar 

  6. Granqvist, C. G. & Hjortsberg, A. Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl. Phys. Lett. 36, 139 (1980).

    Article  ADS  Google Scholar 

  7. Granqvist, C. G. & Hjortsberg, A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52, 4205–4220 (1981).

    Article  ADS  Google Scholar 

  8. Berdahl, P., Martin, M. & Sakkal, F. Thermal performance of radiative cooling panels. Int. J. Heat Mass Transf. 26, 871–880 (1983).

    Article  ADS  MATH  Google Scholar 

  9. Berdahl, P. Radiative cooling with MgO and/or LiF layers. Appl. Opt. 23, 370–372 (1984).

    Article  ADS  Google Scholar 

  10. Orel, B., Gunde, M. K. & Krainer, A. Radiative cooling efficiency of white pigmented paints. Sol. Energy 50, 477–482 (1993).

    Article  ADS  Google Scholar 

  11. Gentle, A. R. & Smith, G. B. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373–379 (2010).

    Article  ADS  Google Scholar 

  12. Cornelius, C. M. & Dowling, J. P. Modification of Planck blackbody radiation by photonic band-gap structures. Phys. Rev. A 59, 4736–4746 (1999).

    Article  ADS  Google Scholar 

  13. Lin, S.-Y. et al. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Phys. Rev. B 62, R2243–R2246 (2000).

    Article  ADS  Google Scholar 

  14. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  ADS  Google Scholar 

  15. Laroche, M., Carminati, R. & Greffet, J.-J. Coherent thermal antenna using a photonic crystal slab. Phys. Rev. Lett. 96, 123903 (2006).

    Article  ADS  Google Scholar 

  16. Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).

    Article  ADS  Google Scholar 

  17. Fan, S. Thermal photonics and energy applications. Joule 1, 264–273 (2017).

    Article  Google Scholar 

  18. Li, W. & Fan, S. Nanophotonic control of thermal radiation for energy applications [Invited]. Opt. Express 26, 15995–16021 (2018).

    Article  ADS  Google Scholar 

  19. Xu, J., Mandal, J. & Raman, A. P. Broadband directional control of thermal emission. Science 372, 393–397 (2021).

    Article  ADS  Google Scholar 

  20. Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).

    Article  MATH  Google Scholar 

  21. Rephaeli, E., Raman, A. & Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).

    Article  ADS  Google Scholar 

  22. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Article  ADS  Google Scholar 

  23. Berk, A. et al. MODTRAN5: 2006 update. Proc. SPIE 6233, 62331F (2006).

    Article  Google Scholar 

  24. Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016).

    Article  ADS  Google Scholar 

  25. Fan, L., Li, W., Jin, W., Orenstein, M. & Fan, S. Maximal nighttime electrical power generation via optimal radiative cooling. Opt. Express 28, 25460–25470 (2020).

    Article  ADS  Google Scholar 

  26. Li, W. et al. Nighttime radiative cooling for water harvesting from solar panels. ACS Photonics 8, 269–275 (2021).

    Article  Google Scholar 

  27. Zhou, L. et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724 (2019).

    Article  Google Scholar 

  28. Goldstein, E. A., Raman, A. P. & Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017).

    Article  ADS  Google Scholar 

  29. Smith, G. & Gentle, A. Radiative cooling: energy savings from the sky. Nat. Energy 2, 17142 (2017).

    Article  ADS  Google Scholar 

  30. Raman, A. P., Li, W. & Fan, S. Generating light from darkness. Joule 3, 2679–2686 (2019).

    Article  Google Scholar 

  31. Dong, M. et al. Fundamental limits of the dew-harvesting technology. Nanoscale Microscale Thermophys. Eng. 24, 43–52 (2020).

    Article  ADS  Google Scholar 

  32. Zhou, M. et al. Vapor condensation with daytime radiative cooling. Proc. Natl Acad. Sci. USA 118, e2019292118 (2021).

    Article  Google Scholar 

  33. Shi, N. N. et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).

    Article  ADS  Google Scholar 

  34. Gentle, A. R. & Smith, G. B. A subambient open roof surface under the mid-summer sun. Adv. Sci. 2, 1500119 (2015).

    Article  Google Scholar 

  35. Kou, J., Jurado, Z., Chen, Z., Fan, S. & Minnich, A. J. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017).

    Article  Google Scholar 

  36. Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article  ADS  Google Scholar 

  37. Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    Article  ADS  Google Scholar 

  38. Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    Article  ADS  Google Scholar 

  39. Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).

    Article  ADS  Google Scholar 

  40. Bhatia, B. et al. Passive directional sub-ambient daytime radiative cooling. Nat. Commun. 9, 5001 (2018).

    Article  ADS  Google Scholar 

  41. Leroy, A. et al. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, eaat9480 (2019).

    Article  ADS  Google Scholar 

  42. Li, X. et al. Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 1, 100221 (2020).

    Article  ADS  Google Scholar 

  43. Xue, X. et al. Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32, 1906751 (2020).

    Article  Google Scholar 

  44. Mandal, J., Yang, Y., Yu, N. & Raman, A. P. Paints as a scalable and effective radiative cooling technology for buildings. Joule 4, 1350–1356 (2020).

    Article  Google Scholar 

  45. Zhang, H. et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl Acad. Sci. USA 117, 14657–14666 (2020).

    Article  Google Scholar 

  46. Wang, T. et al. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021).

    Article  Google Scholar 

  47. Lee, D. et al. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021).

    Article  Google Scholar 

  48. Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Article  ADS  Google Scholar 

  49. Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).

    Article  ADS  Google Scholar 

  50. Zhou, K. et al. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493–1499 (2021).

    Article  ADS  Google Scholar 

  51. Zhao, D. et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).

    Article  Google Scholar 

  52. Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).

    Article  ADS  Google Scholar 

  53. Ulpiani, G., Ranzi, G., Shah, K. W., Feng, J. & Santamouris, M. On the energy modulation of daytime radiative coolers: a review on infrared emissivity dynamic switch against overcooling. Sol. Energy 209, 278–301 (2020).

    Article  ADS  Google Scholar 

  54. Ono, M., Chen, K., Li, W. & Fan, S. Self-adaptive radiative cooling based on phase change materials. Opt. Express 26, A777–A787 (2018).

    Article  ADS  Google Scholar 

  55. Mandal, J. et al. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3, 3088–3099 (2019).

    Article  Google Scholar 

  56. Zhao, H., Sun, Q., Zhou, J., Deng, X. & Cui, J. Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32, 2000870 (2020).

    Article  Google Scholar 

  57. Li, X. et al. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 11, 6101 (2020).

    Article  ADS  Google Scholar 

  58. Chen, Z., Zhu, L., Li, W. & Fan, S. Simultaneously and synergistically harvest energy from the Sun and outer space. Joule 3, 101–110 (2019).

    Article  Google Scholar 

  59. Zhu, L., Raman, A., Wang, K. X., Anoma, M. A. & Fan, S. Radiative cooling of solar cells. Optica 1, 32–38 (2014).

    Article  ADS  Google Scholar 

  60. Zhu, L., Raman, A. P. & Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl Acad. Sci. USA 112, 12282–12287 (2015).

    Article  ADS  Google Scholar 

  61. Li, W., Shi, Y., Chen, K., Zhu, L. & Fan, S. A comprehensive photonic approach for solar cell cooling. ACS Photonics 4, 774–782 (2017).

    Article  Google Scholar 

  62. Sun, X. et al. Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling. IEEE J. Photovolt. 7, 566–574 (2017).

    Article  Google Scholar 

  63. Silverman, T. J. et al. Reducing operating temperature in photovoltaic modules. IEEE J. Photovolt. 8, 532–540 (2018).

    Article  Google Scholar 

  64. Perrakis, G. et al. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures. Opt. Express 28, 18548–18565 (2020).

    Article  ADS  Google Scholar 

  65. Wang, Z. et al. Lightweight, passive radiative cooling to enhance concentrating photovoltaics. Joule 4, 2702–2717 (2020).

    Article  Google Scholar 

  66. Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices (Springer, 2017).

  67. Yeng, Y. X. et al. Enabling high-temperature nanophotonics for energy applications. Proc. Natl Acad. Sci. USA 109, 2280–2285 (2012).

    Article  ADS  Google Scholar 

  68. Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014).

    Article  ADS  Google Scholar 

  69. Li, P. et al. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 27, 4585–4591 (2015).

    Article  Google Scholar 

  70. Thomas, N. H., Chen, Z., Fan, S. & Minnich, A. J. Semiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversion. Sci. Rep. 7, 5362 (2017).

    Article  ADS  Google Scholar 

  71. Lin, K. T. E., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020).

    Article  ADS  Google Scholar 

  72. Li, W., Shi, Y., Chen, Z. & Fan, S. Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).

    Article  ADS  Google Scholar 

  73. Zhu, L., Raman, A. & Fan, S. Color-preserving daytime radiative cooling. Appl. Phys. Lett. 103, 223902 (2013).

    Article  ADS  Google Scholar 

  74. Chen, Y. et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6, eaaz5413 (2020).

    Article  ADS  Google Scholar 

  75. Lozano, L. M. et al. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990–2005 (2019).

    Article  ADS  Google Scholar 

  76. Blandre, E., Yalçin, R. A., Joulain, K. & Drévillon, J. Microstructured surfaces for colored and non-colored sky radiative cooling. Opt. Express 28, 29703–29713 (2020).

    Article  ADS  Google Scholar 

  77. Kim, H. H., Im, E. & Lee, S. Colloidal photonic assemblies for colorful radiative cooling. Langmuir 36, 6589–6596 (2020).

    Article  Google Scholar 

  78. Yalçın, R. A., Blandre, E., Joulain, K. & Drévillon, J. Colored radiative cooling coatings with nanoparticles. ACS Photonics 7, 1312–1322 (2020).

    Article  Google Scholar 

  79. Son, S. et al. Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021).

    Article  Google Scholar 

  80. Yi, Z. et al. Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2, 214–222 (2021).

    Article  Google Scholar 

  81. Zhou, Z., Wang, X., Ma, Y., Hu, B. & Zhou, J. Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1, 100231 (2020).

    Article  Google Scholar 

  82. Kim, M. et al. Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater. 9, 2002226 (2021).

    Article  Google Scholar 

  83. Tong, J. K. et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015).

    Article  Google Scholar 

  84. Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    Article  ADS  Google Scholar 

  85. Catrysse, P. B., Song, A. Y. & Fan, S. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme. ACS Photonics 3, 2420–2426 (2016).

    Article  Google Scholar 

  86. Hsu, P.-C. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).

    Article  ADS  Google Scholar 

  87. Peng, Y. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).

    Article  Google Scholar 

  88. Hsu, P.-C. & Li, X. Photon-engineered radiative cooling textiles. Science 370, 784–785 (2020).

    Article  ADS  Google Scholar 

  89. Cai, L. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, 1802152 (2018).

    Article  Google Scholar 

  90. Peng, Y. & Cui, Y. Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020).

    Article  Google Scholar 

  91. Luo, H. et al. An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy 65, 103998 (2019).

    Article  Google Scholar 

  92. Luo, H. et al. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21, 3879–3886 (2021).

    Article  ADS  Google Scholar 

  93. Santhanam, P. & Fan, S. Thermal-to-electrical energy conversion by diodes under negative illumination. Phys. Rev. B 93, 161410(R) (2016).

    Article  ADS  Google Scholar 

  94. Ono, M., Santhanam, P., Li, W., Zhao, B. & Fan, S. Experimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiode. Appl. Phys. Lett. 114, 161102 (2019).

    Article  ADS  Google Scholar 

  95. Byrnes, S. J., Blanchard, R. & Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Natl Acad. Sci. USA 111, 3927–3932 (2014).

    Article  ADS  Google Scholar 

  96. Buddhiraju, S., Santhanam, P. & Fan, S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl Acad. Sci. USA 115, E3609–E3615 (2018).

    Article  ADS  Google Scholar 

  97. Li, W., Buddhiraju, S. & Fan, S. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020).

    Article  ADS  Google Scholar 

  98. Landsberg, P. T. & Tonge, G. Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1 (1980).

    Article  ADS  Google Scholar 

  99. Zhu, Y., Qian, H., Yang, R. & Zhao, D. Radiative sky cooling potential maps of China based on atmospheric spectral emissivity. Sol. Energy 218, 195–210 (2021).

    Article  ADS  Google Scholar 

  100. Li, M., Peterson, H. B. & Coimbra, C. F. M. Radiative cooling resource maps for the contiguous United States. J. Renew. Sustain. Energy 11, 036501 (2019).

    Article  Google Scholar 

  101. Dong, M., Chen, N., Zhao, X., Fan, S. & Chen, Z. Nighttime radiative cooling in hot and humid climates. Opt. Express 27, 31587 (2019).

    Article  ADS  Google Scholar 

  102. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  ADS  Google Scholar 

  103. Jiang, J., Chen, M. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6, 679–700 (2021).

    Article  ADS  Google Scholar 

  104. Chen, Z. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021).

    Article  Google Scholar 

  105. Shi, Y., Li, W., Raman, A. & Fan, S. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691 (2018).

    Article  Google Scholar 

  106. Zhu, H. et al. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020).

    Article  ADS  Google Scholar 

  107. Zhu, H. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021).

    Article  ADS  Google Scholar 

  108. Shen, L. et al. Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nat. Food 2, 434–441 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

S.F. acknowledges the support of the US Department of Energy (grant no. DE-FG-07ER46426). W.L. acknowledges the support of the National Natural Science Foundation of China (grant nos. 62134009, 62121005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanhui Fan or Wei Li.

Ethics declarations

Competing interests

S.F. owns shares in Skycool Systems, which seeks to commercialize some of the radiative cooling technology discussed here.

Peer review

Peer review information

Nature Photonics thanks Junsuk Rho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00921-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing