Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond electron motion control in dielectric

Abstract

Attosecond science capitalizes on the extreme nonlinearity of strong fields—driven by few-cycle pulses—to attain attosecond temporal resolution and give access to the electron motion dynamics of matter in real time. Here we measured the relative electronic delay response of a dielectric system triggered by a strong field of few-cycle pulses to be of the order of a few hundred attoseconds. Moreover, we exploited the electronic response following the strong driver field to demonstrate all-optical light-field-sampling methodology with attosecond resolution. This methodology provides a direct connection between the driver field and induced ultrafast dynamics in matter. Also, we demonstrate control of electron motion in a dielectric using synthesized light waveforms. This on-demand control of electron motion paves the way for establishing long-anticipated ultrafast switches and quantum electronics. This advancement promises to increase the limiting speed of data processing and information encoding to rates that exceed one petabit per second, opening a new realm of information technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-field-induced electron motion in a dielectric.
Fig. 2: Electronic delay response in SiO2 dielectric system.
Fig. 3: All-optical light-field-sampling methodology.
Fig. 4: Attosecond control of electron motion for ultrafast switching.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The analysis codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  3. Nisoli, M. & Sansone, G. New frontiers in attosecond science. Prog. Quantum Electron. 33, 17–59 (2009).

    Article  ADS  Google Scholar 

  4. Krausz, F. Electrons in Motion: Attosecond Physics Explores Fastest Dynamics (World Scientific, 2019).

    Book  Google Scholar 

  5. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  ADS  Google Scholar 

  6. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    Article  ADS  Google Scholar 

  7. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Article  Google Scholar 

  8. Gaal, P. et al. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature 450, 1210–1213 (2007).

    Article  ADS  Google Scholar 

  9. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  10. Vampa, G. et al. Strong-field optoelectronics in solids. Nat. Photon. 12, 465–468 (2018).

    Article  ADS  Google Scholar 

  11. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  12. You, Y. S. et al. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett. 42, 1816–1819 (2017).

    Article  ADS  Google Scholar 

  13. You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).

    Article  ADS  Google Scholar 

  14. Li, J. et al. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 11, 2748 (2020).

    Article  ADS  Google Scholar 

  15. Wachter, G. et al. Ab initio simulation of electrical currents induced by ultrafast laser excitation of dielectric materials. Phys. Rev. Lett. 113, 087401 (2014).

    Article  ADS  Google Scholar 

  16. Khurgin, J. B. Optically induced currents in dielectrics and semiconductors as a nonlinear optical effect. J. Opt. Soc. Am. B 33, C1–C9 (2016).

    Article  Google Scholar 

  17. Yakovlev, V. S., Kruchinin, S. Y., Paasch-Colberg, T., Stockman, M. I. & Krausz, F. Ultrafast Dynamics Driven by Intense Light Pulses: From Atoms to Solids, from Lasers to Intense X-rays Ch. 12 (Springer, 2016).

  18. Yamada, S., Noda, M., Nobusada, K. & Yabana, K. Time-dependent density functional theory for interaction of ultrashort light pulse with thin materials. Phys. Rev. B 98, 245147 (2018).

    Article  ADS  Google Scholar 

  19. Yabana, K., Sugiyama, T., Shinohara, Y., Otobe, T. & Bertsch, G. F. Time-dependent density functional theory for strong electromagnetic fields in crystalline solids. Phys. Rev. B 85, 045134 (2012).

    Article  ADS  Google Scholar 

  20. Sato, S. A., Yabana, K., Shinohara, Y., Otobe, T. & Bertsch, G. F. Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase. Phys. Rev. B 89, 064304 (2014).

    Article  ADS  Google Scholar 

  21. Paasch-Colberg, T. et al. Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica 3, 1358–1361 (2016).

    Article  ADS  Google Scholar 

  22. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  23. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  24. Apalkov, V. & Stockman, M. I. Theory of dielectric nanofilms in strong ultrafast optical fields. Phys. Rev. B 86, 165118 (2012).

    Article  ADS  Google Scholar 

  25. Lucchini, M. et al. Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy. Nat. Commun. 12, 1021 (2021).

    Article  ADS  Google Scholar 

  26. Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photon. 8, 214–218 (2014).

    Article  ADS  Google Scholar 

  27. Sederberg, S. et al. Attosecond optoelectronic field measurement in solids. Nat. Commun. 11, 430 (2020).

    Article  ADS  Google Scholar 

  28. Korobenko, A. et al. Femtosecond streaking in ambient air. Optica 7, 1372–1376 (2020).

    Article  ADS  Google Scholar 

  29. Mitrofanov, A. V. et al. Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. Phys. Rev. Lett. 106, 147401 (2011).

    Article  ADS  Google Scholar 

  30. Langer, F. et al. Few-cycle lightwave-driven currents in a semiconductor at high repetition rate. Optica 7, 276–279 (2020).

    Article  ADS  Google Scholar 

  31. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  32. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  33. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    Article  ADS  Google Scholar 

  34. Hassan, M. T. et al. Invited article: attosecond photonics: synthesis and control of light transients. Rev. Sci. Instrum. 83, 111301 (2012).

    Article  ADS  Google Scholar 

  35. Weiner, A. M. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is funded by the Gordon and Betty Moore Foundation grant GBMF7938 to M.T.H. This material is also based on work partially supported by the Air Force Office of Scientific Research under award no. FA9550-19-1-0025. This research is partly supported by JST-CREST under grant no. JP-MJCR16N5 to K.Y., by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) under grant no. JPMXS0118068681. Calculations are carried out at Oakforest-PACS at JCAHPC with support through the HPCI System Research Project (project ID: hp20034) and Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba.

Author information

Authors and Affiliations

Authors

Contributions

H.A. and D.H. conducted the experiments and analysed the data. S.Y. and K.Y. carried out the simulations and calculations. V.P. designed and measured the optics of the LFS. M.T.H. conceived, supervised and directed the study. All the authors discussed the results and their interpretations and wrote the manuscript.

Corresponding author

Correspondence to Mohammed Th. Hassan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Shambhu Ghimire and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Sections 1–4.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, D., Alqattan, H., Yamada, S. et al. Attosecond electron motion control in dielectric. Nat. Photon. 16, 33–37 (2022). https://doi.org/10.1038/s41566-021-00918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00918-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing