Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure

Abstract

Dipolar bosonic gases are currently the focus of intensive research due to their interesting many-body physics in the quantum regime. Their experimental embodiments range from Rydberg atoms to GaAs double quantum wells and van der Waals heterostructures built from transition metal dichalcogenides. Although quantum gases are very dilute, mutual interactions between the particles could lead to exotic many-body phenomena such as Bose–Einstein condensation and high-temperature superfluidity. Here we report the effect of repulsive dipolar interactions on the dynamics of interlayer excitons in the dilute regime. By using spatially and temporally resolved photoluminescence imaging, we observe the dynamics of exciton transport, enabling a direct estimation of exciton mobility. The presence of interactions significantly modifies the diffusive transport of excitons, effectively acting as a source of drift force and enhancing the diffusion coefficient by one order of magnitude. Combining repulsive dipolar interactions with the electrical control of interlayer excitons opens up appealing new perspectives for excitonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interlayer excitons in a WSe2/hBN/MoSe2 heterostructure.
Fig. 2: Expansion of an exciton cloud driven by repulsive dipolar interaction.
Fig. 3: Drift velocity and mobility of interlayer excitons.
Fig. 4: Interplay between repulsive dipolar interaction and the electrostatic potential.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  ADS  Google Scholar 

  2. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  ADS  Google Scholar 

  3. High, A. A., Hammack, A. T., Butov, L. V., Hanson, M. & Gossard, A. C. Exciton optoelectronic transistor. Opt. Lett. 32, 2466–2468 (2007).

    Article  ADS  Google Scholar 

  4. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    Article  ADS  Google Scholar 

  5. Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 (2019).

    Article  ADS  Google Scholar 

  6. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  ADS  Google Scholar 

  7. Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    Article  ADS  Google Scholar 

  8. Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. 6, eaba1830 (2020).

    Article  ADS  Google Scholar 

  9. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  Google Scholar 

  10. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  11. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  12. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019).

    Article  ADS  Google Scholar 

  13. Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    Article  ADS  Google Scholar 

  14. Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    Article  ADS  Google Scholar 

  15. Li, W., Lu, X., Wu, J. & Srivastava, A. Optical control of the valley Zeeman effect through many-exciton interactions. Nat. Nanotechnol. 16, 148–152 (2021).

    Article  ADS  Google Scholar 

  16. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  Google Scholar 

  17. Butov, L. V., Shashkin, A. A., Dolgopolov, V. T., Campman, K. L. & Gossard, A. C. Magneto-optics of the spatially separated electron and hole layers in GaAs/AlxGa1–xAs coupled quantum wells. Phys. Rev. B 60, 8753–8758 (1999).

    Article  ADS  Google Scholar 

  18. Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).

    Article  ADS  Google Scholar 

  19. Kyriienko, O., Magnusson, E. B. & Shelykh, I. A. Spin dynamics of cold exciton condensates. Phys. Rev. B 86, 115324 (2012).

    Article  ADS  Google Scholar 

  20. Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton-exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

    Article  ADS  Google Scholar 

  21. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    Article  ADS  Google Scholar 

  22. Seitz, M. et al. Exciton diffusion in two-dimensional metal-halide perovskites. Nat. Commun. 11, 2035 (2020).

    Article  ADS  Google Scholar 

  23. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    Article  ADS  Google Scholar 

  24. Ziegler, J. D. et al. Fast and anomalous exciton diffusion in two-dimensional hybrid perovskites. Nano Lett. 20, 6674–6681 (2020).

    Article  ADS  Google Scholar 

  25. Wang, J. et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Phys. Rev. Lett. 126, 106804 (2021).

    Article  ADS  Google Scholar 

  26. Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    Article  ADS  Google Scholar 

  27. Vörös, Z., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005).

    Article  ADS  Google Scholar 

  28. Allain, A. & Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 8, 7180–7185 (2014).

    Article  Google Scholar 

  29. Chamlagain, B. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano 8, 5079–5088 (2014).

    Article  Google Scholar 

  30. Movva, H. C. P. et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).

    Article  Google Scholar 

  31. Gärtner, A., Holleitner, A. W., Kotthaus, J. P. & Schuh, D. Drift mobility of long-living excitons in coupled GaAs quantum wells. Appl. Phys. Lett. 89, 052108 (2006).

    Article  ADS  Google Scholar 

  32. Wang, X. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00969-2 (2021).

  33. Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    Article  ADS  Google Scholar 

  34. Hammack, A. T., Butov, L. V., Mouchliadis, L., Ivanov, A. L. & Gossard, A. C. Kinetics of indirect excitons in an optically induced trap in GaAs quantum wells. Phys. Rev. B 76, 193308 (2007).

    Article  ADS  Google Scholar 

  35. Hammack, A. T. et al. Trapping of cold excitons in quantum well structures with laser light. Phys. Rev. Lett. 96, 227402 (2006).

    Article  ADS  Google Scholar 

  36. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  ADS  Google Scholar 

  37. Combescot, M., Combescot, R. & Dubin, F. Bose–Einstein condensation and indirect excitons: a review. Rep. Prog. Phys. 80, 066501 (2017).

    Article  ADS  Google Scholar 

  38. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article  ADS  Google Scholar 

  39. Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge many helpful discussions with A. Delteil as well as D. Unuchek and A. Avsar. The authors acknowledge the help of Z. Benes of EPFL CMI for their help with electron beam lithography. Device preparation was carried out in part in the EPFL Centre of MicroNanotechnology (CMI). This work was financially supported by the European Research Council (grant no. 682332) and the Swiss National Science Foundation (grant nos. 175822, 177007 and 164015). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 785219 and 881603 (Graphene Flagship Core 2 and Core 3 phases) as well as support from the CCMX Materials Challenge grant ‘Large area growth of 2D materials for device integration’. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant no. JPMXP0112101001), and JSPS KAKENHI (grant nos. 19H05790 and JP20H00354).

Author information

Authors and Affiliations

Authors

Contributions

Z.S. built the experimental setups, performed the optical measurements and analysed the data with input from A.K. A.K. initiated and supervised the project. A.C. fabricated the device. F.T. worked on device fabrication. J.F.G.M. contributed to the initial stages of setup development. K.W. and T.T. grew the hBN crystals. Z.S. and A.K. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Zhe Sun or Andras Kis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13 and Figs. 1–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Ciarrocchi, A., Tagarelli, F. et al. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nat. Photon. 16, 79–85 (2022). https://doi.org/10.1038/s41566-021-00908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00908-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing