Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum optics of soliton microcombs

Abstract

Soliton microcombs—phase-locked microcavity frequency combs—have become the foundation of several classical technologies in integrated photonics, including spectroscopy, LiDAR and optical computing. Despite the predicted multimode entanglement across the comb, experimental study of the quantum optics of the soliton microcomb has been elusive. In this work we use second-order photon correlations to study the underlying quantum processes of soliton microcombs in an integrated silicon carbide microresonator. We show that a stable temporal lattice of solitons can isolate a multimode below-threshold Gaussian state from any admixture of coherent light, and predict that all-to-all entanglement can be realized for the state. Our work opens a pathway toward a soliton-based multimode quantum resource.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linearized model for quantum optical fields in a DKS state.
Fig. 2: Single-photon spectroscopy of optical microcombs.
Fig. 3: Quantum coherence of parametric oscillation.
Fig. 4: Formation dynamics of secondary combs.
Fig. 5: Quantum correlations in non-phase-locked combs and perfect soliton crystals.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

Code availability

The code used in this study is available from the corresponding author on request.

References

  1. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, aan8083 (2018).

  2. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, aay3676 (2020).

  3. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article  ADS  Google Scholar 

  4. Grassani, D. et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2, 88–94 (2015).

    Article  ADS  Google Scholar 

  5. Jaramillo-Villegas, J. A. et al. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica 4, 655–658 (2017).

    Article  ADS  Google Scholar 

  6. Steiner, T. J. et al. Ultra-bright entangled-photon pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum 2, 010337 (2021).

    Article  Google Scholar 

  7. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article  ADS  Google Scholar 

  8. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article  ADS  Google Scholar 

  9. Samara, F. et al. Entanglement swapping between independent and asynchronous integrated photon-pair sources. Quantum Sci. Technol. 6, 045024 (2021).

  10. Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

    Article  ADS  Google Scholar 

  11. Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

    Article  ADS  Google Scholar 

  12. Arrazola, J. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  ADS  Google Scholar 

  13. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  14. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  15. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  16. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  17. Roslund, J., De Araujo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2014).

    Article  ADS  Google Scholar 

  18. Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 1–9 (2017).

    Article  ADS  Google Scholar 

  19. Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

    Article  ADS  Google Scholar 

  20. Pfister, O. Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B 53, 012001 (2019).

    Article  ADS  Google Scholar 

  21. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  22. Wu, B.-H., Alexander, R. N., Liu, S. & Zhang, Z. Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform. Phys. Rev. Res. 2, 023138 (2020).

    Article  Google Scholar 

  23. Tasker, J. F. et al. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light. Nat. Photon. 15, 11–15 (2021).

    Article  ADS  Google Scholar 

  24. Yang, Z. et al. A squeezed quantum microcomb on a chip. Nat. Photon. 12, 1–8 (2021).

    Google Scholar 

  25. Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon. 9, 536–542 (2015).

    Article  ADS  Google Scholar 

  26. Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  27. Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  29. Matsko, A. B. & Maleki, L. On timing jitter of mode locked Kerr frequency combs. Opt. Express 21, 28862–28876 (2013).

    Article  ADS  Google Scholar 

  30. Bao, C. et al. Quantum diffusion of microcavity solitons. Nat. Phys. 17, 462–466 (2021).

  31. Chembo, Y. K. Quantum dynamics of kerr optical frequency combs below and above threshold: spontaneous four-wave mixing, entanglement, and squeezed states of light. Phys. Rev. A 93, 033820 (2016).

    Article  ADS  Google Scholar 

  32. Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    Article  ADS  Google Scholar 

  33. Haus, H. A. & Lai, Y. Quantum theory of soliton squeezing: a linearized approach. JOSA B 7, 386–392 (1990).

    Article  ADS  Google Scholar 

  34. Spälter, S., Korolkova, N., König, F., Sizmann, A. & Leuchs, G. Observation of multimode quantum correlations in fiber optical solitons. Phys. Rev. Lett. 81, 786 (1998).

    Article  ADS  Google Scholar 

  35. Navarrete-Benlloch, C., Roldán, E., Chang, Y. & Shi, T. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators. Opt. Express 22, 24010–24023 (2014).

    Article  ADS  Google Scholar 

  36. Vernon, Z. & Sipe, J. Strongly driven nonlinear quantum optics in microring resonators. Phys. Rev. A 92, 033840 (2015).

    Article  ADS  Google Scholar 

  37. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  38. Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071–1077 (2019).

    Article  Google Scholar 

  39. Guidry, M. A. et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 7, 1139–1142 (2020).

    Article  ADS  Google Scholar 

  40. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article  ADS  Google Scholar 

  41. Ou, Z. & Lu, Y. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 83, 2556 (1999).

    Article  ADS  Google Scholar 

  42. Blauensteiner, B., Herbauts, I., Bettelli, S., Poppe, A. & Hübel, H. Photon bunching in parametric down-conversion with continuous-wave excitation. Phys. Rev. A 79, 063846 (2009).

    Article  ADS  Google Scholar 

  43. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    Article  ADS  Google Scholar 

  44. Coillet, A. et al. On the transition to secondary Kerr combs in whispering-gallery mode resonators. Opt. Lett. 44, 3078–3081 (2019).

    Article  ADS  Google Scholar 

  45. da Silva, T. F., do Amaral, G. C., Vitoreti, D., Temporão, G. P. & von der Weid, J. P. Spectral characterization of weak coherent state sources based on two-photon interference. JOSA B 32, 545–549 (2015).

    Article  ADS  Google Scholar 

  46. Navarrete-Benlloch, C., Garcés, R., Mohseni, N. & de Valcárcel, G. Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: application to squeezed parametric oscillation beyond the rotating-wave approximation. Phys. Rev. A 103, 023713 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  47. Lukin, D. M. et al. Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. npj Quant. Info. 6, 1–9 (2020).

    ADS  Google Scholar 

  48. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article  ADS  Google Scholar 

  49. Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36–40 (2019).

    Article  ADS  Google Scholar 

  50. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photon. 15, 305–310 (2021).

  51. Ra, Y.-S. et al. Non-gaussian quantum states of a multimode light field. Nat. Phys. 16, 144–147 (2020).

    Article  Google Scholar 

  52. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article  Google Scholar 

  54. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

  55. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  56. Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    Article  Google Scholar 

  57. Daugey, T., Billet, C., Dudley, J., Merolla, J.-M. & Chembo, Y. K. Kerr optical frequency comb generation using whispering-gallery-mode resonators in the pulsed-pump regime. Phys. Rev. A 103, 023521 (2021).

    Article  ADS  Google Scholar 

  58. Imany, P., Lingaraju, N. B., Alshaykh, M. S., Leaird, D. E. & Weiner, A. M. Probing quantum walks through coherent control of high-dimensionally entangled photons. Sci. Adv. 6, eaba8066 (2020).

    Article  ADS  Google Scholar 

  59. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photon. 15, 21–27 (2021).

    Article  ADS  Google Scholar 

  60. Moille, G. et al. Kerr-microresonator soliton frequency combs at cryogenic temperatures. Phys. Rev. Appl. 12, 034057 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with J. Bowers, T. Zhong, L. Chang, C. Bao, B. Shen, A. Dutt and S. Sun. This work is funded by the Defense Advanced Research Projects Agency under the PIPES and LUMOS programmes and by the IET AF Harvey Prize. M.A.G. acknowledges the Albion Hewlett Stanford Graduate Fellowship (SGF) and the NSF Graduate Research Fellowship. D.M.L. acknowledges the Fong SGF and the National Defense Science and Engineering Graduate Fellowship. Part of this work was performed at the Stanford Nanofabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF).

Author information

Authors and Affiliations

Authors

Contributions

M.A.G., D.M.L., K.Y.Y. and J.V. conceived the experiment. M.A.G. conducted quantum correlations theory. K.Y.Y, M.A.G. and D.M.L. conducted soliton generation experiments. D.M.L, M.A.G. and K.Y.Y. conducted quantum correlations experiments. D.M.L. fabricated the devices. D.M.L., K.Y.Y. and M.A.G. conducted LLE simulations. M.A.G. and R.T. performed the entanglement calculation. R.T. provided theoretical guidance. J.V. supervised the project. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Jelena Vučković.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Discussion and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidry, M.A., Lukin, D.M., Yang, K.Y. et al. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022). https://doi.org/10.1038/s41566-021-00901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00901-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing