Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust, efficient, micrometre-scale phase modulators at visible wavelengths

Abstract

Optical phase modulators are essential to large-scale integrated photonic systems at visible wavelengths and are promising for many emerging applications. However, current technologies require large device footprints and either high power consumption or high drive voltages, limiting the number of active elements in a visible-spectrum integrated photonic circuit. Here, we demonstrate visible-spectrum silicon nitride thermo-optic phase modulators based on adiabatic micro-ring resonators that offer at least a one-order-of-magnitude reduction in both the device footprint and power consumption compared with waveguide phase modulators. Designed to operate in the strongly over-coupled regime, the micro-resonators provide 1.6π phase modulation with minimal amplitude variations, corresponding to modulation losses as small as 0.61 dB. By delocalizing the resonant mode, the adiabatic micro-rings exhibit improved robustness against fabrication variations: compared with regular micro-rings, less than one-third of the power is needed to thermo-optically align the resonances of the adiabatic micro-rings across the chip to the laser frequency.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Micro-resonator operating in the strongly over-coupled regime for phase modulation.
Fig. 2: Device geometry.
Fig. 3: Experimental demonstration of phase modulation with minimal amplitude variations at visible wavelengths.
Fig. 4: Robustness of adiabatic micro-rings against fabrication variations.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw datasets generated during the study are too large to be publicly shared, but they are available from the corresponding authors upon reasonable request.

Code availability

The codes used for conducting full-wave simulations of the adiabatic micro-rings and for acquiring data from integrated photonic chips are available from M.L. and N.Y. upon reasonable request.

References

  1. 1.

    Haffner, C. et al. Nano–opto-electro-mechanical switches operated at CMOS-level voltages. Science 366, 860–864 (2019).

    ADS  Google Scholar 

  2. 2.

    Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014).

    Google Scholar 

  3. 3.

    Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS  Google Scholar 

  4. 4.

    Zhang, Q., Yu, H., Barbiero, M., Wang, B. & Gu, M. Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 8, 42 (2019).

    ADS  Google Scholar 

  5. 5.

    Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    ADS  Google Scholar 

  6. 6.

    Aflatouni, F., Abiri, B., Rekhi, A. & Hajimiri, A. Nanophotonic projection system. Opt. Express 23, 21012–21022 (2015).

    ADS  Google Scholar 

  7. 7.

    Guan, B. et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express 22, 145–156 (2014).

    ADS  Google Scholar 

  8. 8.

    Clevenson, H. A. et al. Incoherent light imaging using an optical phased array. Appl. Phys. Lett. 116, 031105 (2020).

    ADS  Google Scholar 

  9. 9.

    Raval, M., Yaacobi, A. & Watts, M. R. Integrated visible light phased array system for autostereoscopic image projection. Opt. Lett. 43, 3678–3681 (2018).

    ADS  Google Scholar 

  10. 10.

    Shin, M. C. et al. Chip-scale blue phased array. Opt. Lett. 45, 1934–1937 (2020).

    ADS  Google Scholar 

  11. 11.

    Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

    ADS  Google Scholar 

  12. 12.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016).

    ADS  Google Scholar 

  13. 13.

    Burgers, A. P. et al. Clocked atom delivery to a photonic crystal waveguide. Proc. Natl Acad. Sci. USA 116, 456–465 (2019).

    ADS  Google Scholar 

  14. 14.

    Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

    ADS  Google Scholar 

  15. 15.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Google Scholar 

  16. 16.

    Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    ADS  Google Scholar 

  17. 17.

    Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).

    ADS  Google Scholar 

  18. 18.

    Hoffman, L. et al. Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications. IEEE Photon. J. 8, 2701211 (2016).

    Google Scholar 

  19. 19.

    Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).

    Google Scholar 

  20. 20.

    Gorin, A., Jaouad, A., Grondin, E., Aimez, V. & Charette, P. Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. Opt. Express 16, 13509–13516 (2008).

    ADS  Google Scholar 

  21. 21.

    Hosseini, E. S., Yegnanarayanan, S., Atabaki, A. H., Soltani, M. & Adibi, A. High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt. Express 17, 14543–14551 (2009).

    ADS  Google Scholar 

  22. 22.

    Gondarenko, A., Levy, J. S. & Lipson, M. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009).

    ADS  Google Scholar 

  23. 23.

    Tien, M.-C. et al. Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. Opt. Express 19, 13551–13556 (2011).

    ADS  Google Scholar 

  24. 24.

    Luke, K., Dutt, A., Poitras, C. B. & Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013).

    ADS  Google Scholar 

  25. 25.

    Romero-García, S., Merget, F., Zhong, F., Finkelstein, H. & Witzens, J. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Opt. Express 21, 14036–14046 (2013).

    ADS  Google Scholar 

  26. 26.

    Subramanian, A. Z. et al. Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photon. J. 5, 2202809 (2013).

    ADS  Google Scholar 

  27. 27.

    Sacher, W. D. et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Opt. Express 27, 37400–37418 (2019).

    ADS  Google Scholar 

  28. 28.

    Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-Loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    ADS  Google Scholar 

  29. 29.

    Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

    ADS  Google Scholar 

  30. 30.

    Gong, Y. & Vučković, J. Photonic crystal cavities in silicon dioxide. Appl. Phys. Lett. 96, 031107 (2010).

    ADS  Google Scholar 

  31. 31.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

    ADS  Google Scholar 

  32. 32.

    Arbabi, A. & Goddard, L. L. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett. 38, 3878–3881 (2013).

    ADS  Google Scholar 

  33. 33.

    Komma, J., Schwarz, C., Hofmann, G., Heinert, D. & Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101, 041905 (2012).

    ADS  Google Scholar 

  34. 34.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    ADS  Google Scholar 

  35. 35.

    Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).

    ADS  Google Scholar 

  36. 36.

    Pfeifle, J., Alloatti, L., Freude, W., Leuthold, J. & Koos, C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt. Express 20, 15359–15376 (2012).

    ADS  Google Scholar 

  37. 37.

    Notaros, M., Raval, M., Notaros, J. & Watts, M. R. Integrated visible-light liquid-crystal phase modulator. In Proc. Frontiers in Optics/Laser Science FW6B.5 (Optical Society of America, 2018).

  38. 38.

    Dennis, B. S. et al. Compact nanomechanical plasmonic phase modulators. Nat. Photon. 9, 267–273 (2015).

    ADS  Google Scholar 

  39. 39.

    Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photon. 8, 229–233 (2014).

    ADS  Google Scholar 

  40. 40.

    Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. & Jackson, D. J. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004).

    ADS  Google Scholar 

  41. 41.

    Bogaerts, W. et al. Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012).

    ADS  Google Scholar 

  42. 42.

    Lee, H., Kananen, T., Soman, A. & Gu, T. Influence of surface roughness on microring-based phase shifters. IEEE Photon. Technol. Lett. 31, 813–816 (2019).

    ADS  Google Scholar 

  43. 43.

    Liang, G. et al. Micron-scale, efficient, robust phase modulators in the visible. In Proc. Conference on Lasers and Electro-Optics JTh5B.4 (Optical Society of America, 2019).

  44. 44.

    Huang, H. et al. Robust miniature pure-phase modulators at λ = 488 nm. In Proc. Conference on Lasers and Electro-Optics STh1J.4 (Optical Society of America, 2020).

  45. 45.

    Pu, M. et al. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator. Opt. Express 18, 6172–6182 (2010).

    ADS  Google Scholar 

  46. 46.

    Hackenbroich, G. & Nöckel, J. U. Dynamical tunneling in optical cavities. Europhys. Lett. 39, 371–376 (1997).

    ADS  Google Scholar 

  47. 47.

    Biberman, A., Timurdogan, E., Zortman, W. A., Trotter, D. C. & Watts, M. R. Adiabatic microring modulators. Opt. Express 20, 29223–29236 (2012).

    ADS  Google Scholar 

  48. 48.

    Chung, S., Nakai, M. & Hashemi, H. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27, 13430–13459 (2019).

    ADS  Google Scholar 

  49. 49.

    Idres, S. & Hashemi, H. Low-power SiN thermo-optic phase modulator operating in red visible wavelength range. In Proc. Conference on Lasers and Electro-Optics JTh2B.7 (Optical Society of America, 2020).

  50. 50.

    Mikkelsen, J. C., Sacher, W. D. & Poon, J. K. S. Adiabatically widened silicon microrings for improved variation tolerance. Opt. Express 22, 9659–9666 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (grant no. HR00111720034 (G.L., A.M., M.C.S., X.J., M.L. and N.Y.)), the National Science Foundation (grant no. QII-TAQS-1936359 (H.H. and N.Y.) and no. ECCS-2004685 (S.S. and N.Y.)) and the Air Force Office of Scientific Research (grant no. FA9550-14-1-0389 (S.S. and N.Y.) and no. FA9550-16-1-0322 (N.Y.)). A.M. is supported by a Clare Boothe Luce Professorship from the Henry Luce Foundation. M.C.S. acknowledges the support of the 2020 Facebook Fellowship award. M.J.C. is supported by the 2018 SMART Scholarship Program of the US Department of Defense. Device fabrication was carried out at the Columbia Nano Initiative cleanroom, at the Advanced Science Research Center NanoFabrication Facility at the Graduate Center of the City University of New York and at the Cornell NanoScale Science and Technology Facility.

Author information

Affiliations

Authors

Contributions

G.L., H.H. and N.Y. conceived the experiments. G.L. and H.H. conducted analytical calculations and full-wave simulations to design the phase modulators. M.J.C. conducted thermodynamic simulations. G.L., H.H., A.M., X.J. and S.S. fabricated the devices. G.L., H.H., A.M., M.C.S. and N.Y. constructed the experimental set-up and characterized device performance. G.L., H.H. and M.J.C. analysed the data. M.L. and N.Y. supervised the project. All authors prepared and edited the manuscript.

Corresponding authors

Correspondence to Michal Lipson or Nanfang Yu.

Ethics declarations

Competing interests

G.L., H.H., M.L. and N.Y. are listed as inventors in a US non-provisional patent application no. 16/838,714, which is related to the technology reported in this article and claims priority to US provisional applications no. 62/838,084 and 62/828,261 filed by Columbia University. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–17, Figs. 1–17 and Tables 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Huang, H., Mohanty, A. et al. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photon. 15, 908–913 (2021). https://doi.org/10.1038/s41566-021-00891-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing