Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic-free silicon nitride integrated optical isolator

Abstract

Integrated photonics enables signal synthesis, modulation and conversion using photonic integrated circuits (PICs). Many materials have been developed, among which silicon nitride (Si3N4) has emerged as a leading platform particularly for nonlinear photonics. Low-loss Si3N4 PICs have been widely used for frequency comb generation, narrow-linewidth lasers, microwave photonics and photonic computing networks. Yet, among all demonstrated functionalities for Si3N4 integrated photonics, optical non-reciprocal devices such as isolators and circulators have not been achieved. Conventionally, they are realized based on the Faraday effect of magneto-optic materials under an external magnetic field; however, it has been challenging to integrate magneto-optic materials that are not compatible with complementary metal–oxide–semiconductors and that require bulky external magnet. Here we demonstrate a magnetic-free optical isolator based on aluminium nitride (AlN) piezoelectric modulators monolithically integrated on low-loss Si3N4 PICs. The transmission reciprocity is broken by spatio-temporal modulation of a Si3N4 microring resonator with three AlN bulk acoustic wave resonators that are driven with a rotational phase. This design creates an effective rotating acoustic wave that allows indirect interband transition in only one direction among a pair of strongly coupled optical modes. A maximum of 10 dB isolation is achieved under 300 mW total radiofrequency power applied to three actuators, with minimum insertion loss of 0.1 dB. An isolation bandwidth of 700 MHz is obtained, determined by the optical resonance linewidth. The isolation remains constant over nearly 30 dB dynamic range of optical input power, showing excellent optical linearity. Our integrated, linear, magnetic-free, electrically driven optical isolator could be a key building block for integrated lasers and optical interfaces for superconducting circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of the nitride optical isolator.
Fig. 2: Characterization of optical and mechanical properties of the isolator device.
Fig. 3: Optical isolation and radiofrequency phases dependency.
Fig. 4: RF power dependency and anti-Stokes TM sideband generation.
Fig. 5: Influence of optical mode spacing, time-domain response and optical power linearity.

Similar content being viewed by others

Data availability

The code and data used to produce the plots within this work are available on Zenodo (https://doi.org/10.5281/zenodo.5120854). All other data used in this study are available from the corresponding authors on reasonable request.

References

  1. Xiang, C. et al. Narrow-linewidth iii–v/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    Article  ADS  Google Scholar 

  2. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  3. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  4. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 gbit s–1 and beyond. Nat. Photon.13, 359–364 (2019).

    Article  ADS  Google Scholar 

  5. Tian, H. et al. Hybrid integrated photonics using bulk acoustic resonators. Nat. Commun. 11, 3073 (2020).

    Article  ADS  Google Scholar 

  6. Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).

    Article  ADS  Google Scholar 

  7. Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

    Article  ADS  Google Scholar 

  8. Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).

    Article  ADS  Google Scholar 

  9. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  Google Scholar 

  10. Chang, L. et al. Ultra-efficient frequency comb generation in algaas-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

    Article  ADS  Google Scholar 

  11. Xuan, Y. et al. High-q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Article  ADS  Google Scholar 

  12. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  ADS  Google Scholar 

  13. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  ADS  Google Scholar 

  14. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  Google Scholar 

  15. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  16. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  17. Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019).

    Article  ADS  Google Scholar 

  18. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  ADS  Google Scholar 

  19. Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    Article  ADS  Google Scholar 

  20. Liu, X. et al. Integrated high-q crystalline aln microresonators for broadband kerr and raman frequency combs. ACS Photon. 5, 1943–1950 (2018).

    Article  Google Scholar 

  21. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Article  ADS  Google Scholar 

  22. Jin, W. et al. Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-Q microresonators. Nat. Photon 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  23. Srinivasan, K. & Stadler, B. J. H. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review [invited]. Opt. Mater. Express 8, 3307–3318 (2018).

    Article  ADS  Google Scholar 

  24. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  25. Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).

    Article  Google Scholar 

  26. Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7, 1555–1562 (2020).

    Article  ADS  Google Scholar 

  27. Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  28. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  29. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  30. Kim, S., Sohn, D. B., Peterson, C. W. & Bahl, G. On-chip optical non-reciprocity through a synthetic hall effect for photons. APL Photon. 6, 011301 (2021).

    Article  ADS  Google Scholar 

  31. Dostart, N., Gevorgyan, H., Onural, D. & Popović, M. A. Optical isolation using microring modulators. Opt. Lett. 46, 460–463 (2021).

    Article  ADS  Google Scholar 

  32. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  ADS  Google Scholar 

  33. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  34. Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    Article  ADS  Google Scholar 

  35. Bino, L. D. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Article  ADS  Google Scholar 

  36. Hua, S. et al. Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun. 7, 13657 (2016).

    Article  ADS  Google Scholar 

  37. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    Article  ADS  Google Scholar 

  38. Cao, Q.-T. et al. Reconfigurable symmetry-broken laser in a symmetric microcavity. Nat. Commun. 11, 1136 (2020).

    Article  ADS  Google Scholar 

  39. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    Article  ADS  Google Scholar 

  40. Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    Article  ADS  Google Scholar 

  41. Shen, Z. et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018).

    Article  ADS  Google Scholar 

  42. Ruesink, F., Mathew, J. P., Miri, M.-A., Alù, A. & Verhagen, E. Optical circulation in a multimode optomechanical resonator. Nat. Commun. 9, 1798 (2018).

    Article  ADS  Google Scholar 

  43. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  44. Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    Article  ADS  Google Scholar 

  45. Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    Article  ADS  Google Scholar 

  46. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  47. Merklein, M. et al. On-chip broadband nonreciprocal light storage. Nanophotonics 10, 75–82 (2021).

    Article  Google Scholar 

  48. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article  ADS  Google Scholar 

  49. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  50. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  51. Sounas, D. L. & Alù, A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation. ACS Photon. 1, 198–204 (2014).

    Article  Google Scholar 

  52. Shi, Y., Lin, Q., Minkov, M. & Fan, S. Nonreciprocal optical dissipation based on direction-dependent Rabi splitting. IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).

    Google Scholar 

  53. Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    Article  ADS  Google Scholar 

  54. Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    Article  ADS  Google Scholar 

  55. Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    Article  ADS  Google Scholar 

  56. Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article  ADS  Google Scholar 

  57. Balram, K. C., Davanço, M., Lim, J. Y., Song, J. D. & Srinivasan, K. Moving boundary and photoelastic coupling in gaas optomechanical resonators. Optica 1, 414–420 (2014).

    Article  ADS  Google Scholar 

  58. Stanfield, P. R., Leenheer, A. J., Michael, C. P., Sims, R. & Eichenfield, M. CMOS-compatible, piezo-optomechanically tunable photonics for visible wavelengths and cryogenic temperatures. Opt. Express 27, 28588–28605 (2019).

    Article  ADS  Google Scholar 

  59. Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017).

    Article  ADS  Google Scholar 

  60. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274 (2017).

    Article  ADS  Google Scholar 

  61. Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett. 44, 4737–4740 (2019).

    Article  ADS  Google Scholar 

  62. Sohn, D., Örsel, O. E. & Bahl, G. Electrically driven linear optical isolation through phonon mediated autler-townes splitting. Preprint at https://arxiv.org/abs/2104.04803 (2021).

  63. Blésin, T., Tian, H., Bhave, S. & Kippenberg, T. Quantum coherent microwave-optical transduction using high overtone bulk acoustic resonances. Preprint at https://arxiv.org/abs/2103.00471 (2021).

  64. Pirro, M. et al. Characterization of dielectric and piezoelectric properties of ferroelectric alscn thin films. In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) 646–649 (IEEE, 2021).

Download references

Acknowledgements

This work was supported by US National Science Foundation’s RAISE TAQS program under grant no. PHY 18-39164, by NSF QISE-Net under grant no. DMR 17-47426, by the Air Force Office of Scientific Research under award no. FA8655-20-1-7009, by funding from the EU H2020 research and innovation programme under grant agreement no. 732894 (HOT), and by Swiss National Science Foundation under grant agreement no. 176563 (BRIDGE). Samples were fabricated in the EPFL center of MicroNanoTechnology (CMi), and Birck Nanotechnology Center at Purdue University. AlN deposition was performed at Plasma-Therm LLC. We thank Y. Shi for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.T. and J.L. designed the devices. J.L., H.T. and R.N.W. developed the process and fabricated the samples, with the assistance from J.H.. H.T. performed the experiment and simulations, and analysed the data. A.S. performed the experiment on the overcoupled device with the assistance from T.B.. H.T. and J.L. wrote the manuscript, with input from others. S.A.B and T.J.K supervised the collaboration.

Corresponding authors

Correspondence to Tobias J. Kippenberg or Sunil A. Bhave.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Chun-Hua Dong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1 and 2, Notes 1–11.

Supplementary Video 1

Experimental demonstration of optical transmission spectrum of TE and TM light in forwards and backwards directions.

Supplementary Video 2

Unidirectional transmission of optical pulses with 10 ns pulse width.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Liu, J., Siddharth, A. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021). https://doi.org/10.1038/s41566-021-00882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00882-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing