Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Landau level laser

Abstract

Tunable lasers in the terahertz frequency range are of great demand for many spectroscopic applications. The first continuously tunable p-Ge Landau level terahertz laser had the drawback of pulsed operation at very low temperatures. There have been promising developments of Landau level lasers based on graphene in combination with other two-dimensional materials. Extended theoretical work has resulted in an understanding of carrier dynamics and the relevant Auger and phonon processes. Both optical and electrical pumping schemes have been proposed to achieve inversion and lasing. There are still open questions about the combination of two-dimensional structures and the carrier transfer mechanisms between the layers. By solving the technological challenges, the realization of a near room-temperature Landau level laser can be envisaged.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Laser spectra and the tuning rate of the p-Ge laser.

panel a adapted with permission from ref. 44, APS

Fig. 2: Magneto transmission and the tuning range of Landau level splittings in graphene.
Fig. 3: Direct comparison of the carrier relaxation times of graphene seen in differential transmission spectra.
Fig. 4: Schematic of the Dirac cone and Landau levels for graphene.
Fig. 5: Schematic structures for tunnel injection pumped inversion in graphene.

References

  1. Schneider, J. Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys. Rev. Lett. 2, 504–505 (1959).

    ADS  Google Scholar 

  2. Lax, B. Cyclotron resonance and impurity levels in semiconductors. In Proc. International Symposium on Quantum Electronics (ed. Townes, C. H.) 428 (Columbia Univ. Press, 1960).

  3. Wolff, P. A. Proposal for a cyclotron resonance maser in InSb. Physics (N.Y.) 1, 147–157 (1964).

    MathSciNet  Google Scholar 

  4. Ivanov, Yu. L. & Vasiljev, Yu. V. Stimulated Landau level emission in p-Ge. Sov. Tech. Lett. 9, 264–268 (1983).

    Google Scholar 

  5. Faist, J. et al. Quantum cascade laser. Science 264, 1092–1094 (1994).

    Google Scholar 

  6. Koehler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    ADS  Google Scholar 

  7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Google Scholar 

  8. Morimoto, T., Hatsugai, Y. & Aoki, H. Cyclotron radiation and emission in graphene. Phys. Rev. B 78, 73406 (2008).

    ADS  Google Scholar 

  9. Gornik, E. Recombination radiation from impact-ionized shallow donors in n-type InSb. Phys. Rev. Lett. 29, 595 (1972).

    ADS  Google Scholar 

  10. Kobayashi, K. F., Komatsubara, K. F. & Otsuka, E. Tunable far-infrared radiation from hot electrons in n-type InSb. Phys. Rev. Lett. 30, 702 (1973).

    ADS  Google Scholar 

  11. Waldmann, S., Chang, T. S., Fetterman, H. R., Stillman, G. E. & Wolfe, C. M. Recombination radiation from Landau states in impact ionized GaAs. Solid State Commun. 15, 1309–1312 (1974).

    ADS  Google Scholar 

  12. Gornik, E. & Tsui, D. C. Cyclotron and subband emission from Si-inversion layers. Surf. Sci. 73, 217–221 (1978).

    ADS  Google Scholar 

  13. Gornik, E., Nguyen, V. T. & Damen, T. C. Radiative transitions of photoexcited electrons between Landau levels in n-InSb. Appl. Phys. Lett. 29, 169–171 (1976).

    ADS  Google Scholar 

  14. Gornik, E. et al. Landau level electron lifetimes in n-InSb. Phys. Rev. Lett. 40, 1151–1154 (1978).

    ADS  Google Scholar 

  15. Allan, G. R. et al. Impurity and Landau-level electron lifetimes in n-type GaAs. Phys. Rev. B31, 3560–3567 (1985).

    ADS  Google Scholar 

  16. Bosco, L. et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 115, 010601 (2019).

    ADS  Google Scholar 

  17. Khalatpour, A. et al. High-power portable terahertz laser systems. Nat. Photon. 15, 16–20 (2021).

    ADS  Google Scholar 

  18. Belkin, M. et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photon. 1, 288–292 (2007).

    ADS  Google Scholar 

  19. Lu, Q. Y., Bandyopadhyay, N., Slivken, S., Bai, Y. & Razeghi, M. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl. Phys. Lett. 104, 221105 (2014).

    ADS  Google Scholar 

  20. Ulrich, J., Zobl, R., Unterrainer, K., Strasser, G. & Gornik, E. Magnetic-field-enhanced quantum-cascade emission. Appl. Phys. Lett. 76, 19–21 (2000).

    ADS  Google Scholar 

  21. Leuliet, A. et al. Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers. Phys. Rev. B 73, 085311 (2006).

    ADS  Google Scholar 

  22. Wade, A. et al. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photon. 3, 41–45 (2009).

    ADS  Google Scholar 

  23. Becker, C. et al. GaAs quantum box cascade lasers. Appl. Phys. Lett. 81, 2941–2944 (2002).

    ADS  Google Scholar 

  24. Pere-Laperne, N. et al. Inter-Landau level scattering and LO-phonon emission in terahertz quantum cascade laser. Appl. Phys. Lett. 91, 062102 (2007).

    ADS  Google Scholar 

  25. Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–66 (2009).

    ADS  Google Scholar 

  26. Scalari, G. et al. Magnetically assisted quantum cascade laser emitting from 740 GHz to 1.4 THz. Appl. Phys. Lett. 97, 081110 (2010).

    ADS  Google Scholar 

  27. Vosilyus, I. I. & Levinson, I. B. Optical phonon production and galvanomagnetic effects for a large-anisotropy electron distribution. Sov. Phys. JETP 23, 1104–1110 (1966).

    ADS  Google Scholar 

  28. Kurosawa, T. & Maeda, H. Monte Carlo calculation of hot electron phenomena. I. Streaming in the absence of a magnetic field. J. Phys. Soc. Jpn Suppl. 31, 668–678 (1971).

    ADS  Google Scholar 

  29. Andronov, A. A. & Pozhela, K. (eds) Hot Electrons in Semiconductors: Streaming and Anisotropic Distributions in Crossed Fields (Gorki, 1983).

  30. Helm, M. & Gornik, E. Landau-level population inversion in crossed electric and quantizing magnetic fields. Phys. Rev. B 34, 7459–7462 (1986).

    ADS  Google Scholar 

  31. Helm, M., Unterrainer, K. & Gornik, E. Hot-carrier quantum distribution function in crossed electric and magnetic field. Phys. Rev. B 39, 6212–6218 (1989).

    ADS  Google Scholar 

  32. Vasiljev, Y. B. & Ivanov, Y. Light amplification during Landau-level inversion of light Germanium holes. Sov. Tech. Phys. Lett. 10, 398–401 (1984).

    Google Scholar 

  33. Andronov, A. A. et al. Germanium hot-hole cyclotron resonance maser with negative effective hole masses. Sov. Phys. JETP Lett. 63, 211–221 (1986).

    Google Scholar 

  34. Andronov, A. A. et al. Stimulated emission in the long-wavelength IR region from hot holes in Ge in crossed electric and magnetic fields. Sov. Phys. JETP Lett. 49, 804–806 (1984).

    ADS  Google Scholar 

  35. Komiyama, S., Iizuka, N. & Akasaka, Y. Evidence for induced far‐infrared emission from p‐Ge in crossed electric and magnetic fields. Appl. Phys. Lett. 47, 958–961 (1985).

    ADS  Google Scholar 

  36. Gornik, E. & Andronov, A. A. (eds) Far-Infrared Semiconductor Lasers: Optical Quantum Electronics 23 (Chapman and Hall, 1991).

  37. Bründermann, E. et al. Miniaturization of p-Ge lasers: progress toward continuous wave operation. Appl. Phys. Lett. 68, 1359–1361 (1996).

    ADS  Google Scholar 

  38. Bergner, A., Heugen, U., Bründermann, E., Schwaab, G. & Havenitha, M. New p-Ge THz laser spectrometer for the study of solutions: THz absorption of water. Rev. Sci. Instrum. 76, 63110 (2005).

    Google Scholar 

  39. Vasiljev, Y. B. & Ivanov, Y. L. Improved stimulated Landau lasing in p-Ge. In Proc. 18th International Conference on the Physics of Semiconductors (ed. Engström, O.) 1659–1663 (World Scientific, 1987).

  40. Mityagin, Yu. A. et al. Anticrossing of Landau levels and stimulated emission of hot holes in the cyclotron-transition region. Sov. Phys. JETP Lett. 46, 116–119 (1987).

    Google Scholar 

  41. Unterrainer, K. et al. Tunable cyclotron resonance laser based on hot holes in Ge applied to FIR spectroscopy of GaAs/AlGaAs heterostructures. Solid State Electronics 32, 1527–1531 (1989).

    ADS  Google Scholar 

  42. Unterrainer, K. et al. Tunable cyclotron-resonance laser in germanium. Phys. Rev. Lett. 64, 2277 (1990).

    ADS  Google Scholar 

  43. Ivanov, Yu. I. et al. Population inversion in the set of light hole Landau levels in germanium. Semicond. Sci. Technol. 7, B636–B637 (1992).

    Google Scholar 

  44. Pfeffer, P. et al. p-Type Ge cyclotron-resonance laser: Theory and experiment. Phys. Rev. B 47, 4522 (1993).

    ADS  Google Scholar 

  45. Klimenko, O. A. et al. Terahertz wide range tunable cyclotron resonance p-Ge laser. J. Phys. 193, 12064–12067 (2009).

    Google Scholar 

  46. Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  Google Scholar 

  47. Wendler, F., Knorr, A. & Malic, E. Carrier multiplication in graphene under Landau quantization. Nat. Commun. 5, 3703 (2014).

    ADS  Google Scholar 

  48. Sadowsky, M. L. et al. Landau level spectroscopy of ultrathin graphene layers. Phys. Rev. Lett. 97, 266405 (2006).

    ADS  Google Scholar 

  49. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011).

    ADS  Google Scholar 

  50. Aoki, H. Novel Landau level laser in the quantum Hall regime. Appl. Phys. Lett. 48, 559–560 (1986).

    ADS  Google Scholar 

  51. Ryzhii, V., Ryzhii, M. & Otsuji, T. Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys. 101, 83114 (2007).

    Google Scholar 

  52. Ryzhii, V. et al. Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures. J. Appl. Phys. 106, 84507 (2009).

    Google Scholar 

  53. Ryzhii, V. et al. Toward the creation of terahertz graphene injection laser. J. Appl. Phys. 110, 94503 (2011).

    Google Scholar 

  54. Davoyan, A. R. et al. Graphene surface emitting terahertz laser: diffusion pumping concept. Appl. Phys. Lett. 103, 251102 (2013).

    ADS  Google Scholar 

  55. Andronov, A. A. & Pozdniakova, V. I. THz dispersion and amplification under streaming in graphene at 300 K. Semiconductors 54, 1078–1085 (2020).

    ADS  Google Scholar 

  56. Vorob’ev, L. E. et al. Generation of millimeter radiation due to electric-field-induced electron-transit-time resonance in InP. Sov. Phys. JETP Lett. 73, 219–222 (2001).

    ADS  Google Scholar 

  57. Plochocka, P. et al. Slowing carrier relaxation in graphene using a magnetic field. Phys. Rev. B 80, 172102 (2009).

    Google Scholar 

  58. Wang, Z. W., Liu, L. & Li, Z. Q. Fast two-phonon relaxation process between the Landau levels of graphene on different polar substrates. Europhys. Lett. 108, 36005 (2014).

    ADS  Google Scholar 

  59. Mittendorff, M. et al. Ultrafast carrier dynamics in Landau-quantized graphene: strong Auger scattering. Nat. Phys. 11, 75–81 (2015).

    Google Scholar 

  60. Wendler, F. et al. Symmetry-breaking supercollisions in Landau-quantized graphene. Phys. Rev. Lett. 119, 067405 (2017).

    ADS  Google Scholar 

  61. Malic, E. et al. Carrier dynamics in graphene: ultrafast many-particle phenomena. Ann. Phys. 529, 1700038 (2017).

    Google Scholar 

  62. Wang, Y., Tokman, M. & Belyanin, A. Continuous-wave lasing between Landau levels in graphene. Phys. Rev. A 91, 033821 (2015).

    ADS  Google Scholar 

  63. Wendler, F. & Malic, E. Towards a tunable graphene-based Landau level laser in the THz regime. Sci. Rep. 5, 12646 (2015).

    ADS  Google Scholar 

  64. Wendler, F. & Malic, E. Population inversion in Landau-quantized graphene. Phys. Rev. B 93, 035432 (2016).

    ADS  Google Scholar 

  65. Brem, S., Wendler, F. & Malic, E. Microscopic modeling of tunable graphene-based terahertz Landau level lasers. Phys. Rev. B 96, 045427 (2017).

    ADS  Google Scholar 

  66. Brem, S., Wendler, F., Winnerl, S. & Malic, E. Electrically pumped graphene-based Landau-level laser. Phys. Rev. Mater. 2, 034002 (2018).

    Google Scholar 

  67. Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B 81, 769–777 (2005).

    ADS  Google Scholar 

  68. Khalatpour, A., Paulsen, A. K., Deimert, C., Wasilewski, Z. R. & Hu, Q. High-power portable terahertz laser systems. Nat. Photon. 15, 16–20 (2021).

    ADS  Google Scholar 

  69. Xu, G. et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nat. Commun. 3, 952 (2012).

    ADS  Google Scholar 

  70. Schönhuber, S. et al. Random lasers for broadband directional emission. Optica 3, 1035–1038 (2016).

    Google Scholar 

  71. Xu, L. et al. Metasurface external cavity laser. Appl. Phys. Lett. 107, 221105 (2015).

    ADS  Google Scholar 

  72. Curwen, A. C., Reno, J. L. & Williams, B. S. Broadband continuous single-mode tuning of a short-cavity quantum cascade laser. Nat. Photon. 13, 855–859 (2019).

    ADS  Google Scholar 

  73. Tzalenchuk, A. First Graphene Landau Level Laser (2019); https://apps.dtic.mil/sti/pdfs/AD1096446.pdf

  74. Yadav, D. et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructure. 2D Mater. 3, 045009 (2016).

    Google Scholar 

  75. Wang, Z. et al. Phonon-mediated interlayer charge separation and recombination in a MoSe2/WSe2 heterostructure. Nano Lett. 5, 2165–2173 (2021).

    ADS  Google Scholar 

  76. Fu, S. et al. Long-lived charge separation following pump-wavelength-dependent ultrafast charge transfer in graphene/WS2 heterostructures. Sci. Adv. 7, 9061–9071 (2021).

    ADS  Google Scholar 

  77. Helm, M., England, P., Colas, E., DeRosa, F. & Allen, S. Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling. Phys. Rev. Lett. 63, 74–77 (1989).

    ADS  Google Scholar 

  78. Wang, Z. W., Liu, L., Li, W. P. & Xu, K. The linewidth of infrared transitions between Landau levels in graphene. Phys. Lett. A 378, 65–67 (2014).

    ADS  Google Scholar 

  79. Orlita, M. et al. Observation of three-dimensional massless Kane fermions in zinc-blende crystal. Nat. Phys. 10, 233–238 (2014).

    Google Scholar 

  80. But, D. B. et al. Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons. Nat. Photon. 13, 783–787 (2019).

    ADS  Google Scholar 

  81. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    Google Scholar 

  82. Lupi, S. & Molle, A. Emerging Dirac materials for THz plasmonics. Appl. Mater. Today 20, 100732 (2020).

    Google Scholar 

  83. Zollner, K. & Fabian, J. Heterostructures of graphene and topological insulators Bi2Se3, Bi2Te3 and Sb2Te3. Phys. Stat. Sol. B 258, 2000081 (2021).

    ADS  Google Scholar 

  84. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  85. Ryzhii, V. et al. Far-infrared and terahertz emitting diodes based on graphene/black-P and graphene/MoS2 heterostructures. Opt. Express 28, 24136–24151 (2020).

    ADS  Google Scholar 

  86. Liu, Y., Zhang, J., Meng, S., Yam, C. Y. & Frauenheim, T. Electric field tunable ultrafast interlayer charge transfer in graphene/WS2 heterostructure. Nano Lett. 21, 4403–4409 (2021).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Gornik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Jérôme Faist, Manfred Helm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gornik, E., Strasser, G. & Unterrainer, K. Landau level laser. Nat. Photon. 15, 875–883 (2021). https://doi.org/10.1038/s41566-021-00879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00879-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing