Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optomechanical quantum teleportation


Quantum teleportation, the faithful transfer of an unknown input state onto a remote quantum system1, is a key component in long-distance quantum communication protocols2 and distributed quantum computing3,4. At the same time, high-frequency nano-optomechanical systems5 hold great promise as nodes in a future quantum network6, operating on-chip at low-loss optical telecom wavelengths with long mechanical lifetimes. Recent demonstrations include entanglement between two resonators7, a quantum memory8 and microwave-to-optics transduction9,10,11. Despite these successes, quantum teleportation of an optical input state onto a long-lived optomechanical memory is an outstanding challenge. Here we demonstrate quantum teleportation of a polarization-encoded optical input state onto the joint state of a pair of nanomechanical resonators. Our protocol also allows to store and retrieve an arbitrary qubit state onto a dual-rail encoded optomechanical quantum memory. This work demonstrates the full functionality of a single quantum repeater node and presents a key milestone towards applications of optomechanical systems as quantum network nodes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Teleportation protocol and experimental setup.
Fig. 2: EPR source characterization.
Fig. 3: Experimental quantum teleportation.

Data availability

Source data for the plots are available via Zenodo at

Code availability

The QuTiP code used for the simulations in the Supplementary Information is available at


  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    MathSciNet  Article  ADS  Google Scholar 

  2. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  3. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  4. Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    MathSciNet  Article  ADS  Google Scholar 

  5. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  6. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  7. Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    Article  ADS  Google Scholar 

  8. Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).

    Article  Google Scholar 

  9. Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate. Nat. Phys. 16, 69–74 (2020).

    Article  Google Scholar 

  10. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article  ADS  Google Scholar 

  11. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  ADS  Google Scholar 

  12. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  13. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  14. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  15. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  16. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  17. Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon. 10, 676–680 (2016).

    Article  ADS  Google Scholar 

  18. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  19. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    MathSciNet  Article  ADS  Google Scholar 

  20. Hou, P.-Y. et al. Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016).

    Article  ADS  Google Scholar 

  21. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007).

    Article  ADS  Google Scholar 

  22. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  23. Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).

    Article  ADS  Google Scholar 

  24. Fröwis, F., Sekatski, P., Dür, W., Gisin, N. & Sangouard, N. Macroscopic quantum states: measures, fragility, and implementations. Rev. Mod. Phys. 90, 025004 (2018).

    MathSciNet  Article  ADS  Google Scholar 

  25. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    Article  ADS  Google Scholar 

  26. Li, J. et al. Proposal for optomechanical quantum teleportation. Phys. Rev. A 102, 032402 (2020).

    Article  ADS  Google Scholar 

  27. Pautrel, S., Denis, Z., Bon, J., Borne, A. & Favero, I. An optomechanical discrete variable quantum teleportation scheme. Phys. Rev. A 101, 063820 (2020).

    Article  ADS  Google Scholar 

  28. Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    Article  ADS  Google Scholar 

  29. Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

    MathSciNet  Article  ADS  Google Scholar 

  30. Brown, L. D., Cai, T. T. & DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 16, 101–133 (2001).

    MathSciNet  Article  Google Scholar 

  31. Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).

    Article  ADS  Google Scholar 

Download references


We would like to thank K. Hammerer and R. Stockill for valuable discussions. This work is supported by the Foundation for Fundamental Research on Matter (FOM) Projectruimte grant (16PR1054), the European Research Council (ERC StG Strong-Q, 676842 and ERC CoG Q-ECHOS, 101001005) and by the Netherlands Organization for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience programme, as well as through Vidi (680-47-541/994) and Vrij Programma (680-92-18-04) grants. R.B. and T.P.M.A. acknowledge funding from the Fundação de Amparo à Pesquisa do Estado de São Paulo (2019/01402-1, 2016/18308-0, 2018/15580-6 and 2018/25339-4) and from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001). B.H. also acknowledges funding from the European Union under a Marie Skłodowska-Curie COFUND fellowship.

Author information

Authors and Affiliations



N.F., B.H., A.W., J.L. and S.G. devised and planned the experiment. R.B. and B.H. fabricated the sample, and N.F., B.H., R.B. and A.W. built the setup and performed the measurements. B.H. developed the code for the simulations. N.F., B.H. and S.G. analysed the data and wrote the manuscript with input from all authors. T.P.M.A. and S.G. supervised the project.

Corresponding author

Correspondence to Simon Gröblacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8, Figs. 1–7 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiaschi, N., Hensen, B., Wallucks, A. et al. Optomechanical quantum teleportation. Nat. Photon. 15, 817–821 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing