Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parametrically driven Kerr cavity solitons

Abstract

Cavity solitons are optical pulses that propagate indefinitely in nonlinear resonators. They are attracting attention, both for their many potential applications and their connection to other fields of science. Cavity solitons differ from laser dissipative solitons in that they are coherently driven. So far the focus has been on driving Kerr solitons externally, at their carrier frequency, in which case a single stable localized solution exists for fixed parameters. Here we experimentally demonstrate Kerr cavity solitons driving at twice their carrier frequency, using an all-fibre optical parametric oscillator. In that configuration, called parametric driving, two backgroundless solitons of opposite phase may coexist. We harness this multiplicity to generate a string of random bits, thereby extending the pool of applications of Kerr cavity solitons to random number generators and Ising machines. Our results are in excellent agreement with a seminal amplitude equation, highlighting connections to hydrodynamic and mechanical systems, among others.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Illustration of the differences between externally driven and parametrically driven cavity solitons.
Fig. 2: Bifurcation structure of the PDNLSE.
Fig. 3: Experimental set-up.
Fig. 4: Characterization of the PDCS.
Fig. 5: Random bit generation.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    MATH  Article  ADS  Google Scholar 

  2. Ahlers, G., Grossmann, S. & Lohse, D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503–537 (2009).

    Article  ADS  Google Scholar 

  3. Lejeune, O., Tlidi, M. & Couteron, P. Localized vegetation patches: a self-organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002).

    Article  ADS  Google Scholar 

  4. Umbanhowar, P. B., Melo, F. & Swinney, H. L. Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996).

    Article  ADS  Google Scholar 

  5. Barashenkov, I. V. & Smirnov, Y. S. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E 54, 5707–5725 (1996).

    Article  ADS  Google Scholar 

  6. Barashenkov, I. V., Bogdan, M. M. & Korobov, V. I. Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation. Europhys. Lett. 15, 113–118 (1991).

    Article  ADS  Google Scholar 

  7. Bondila, M., Barashenkov, I. V. & Bogdan, M. M. Topography of attractors of the parametrically driven nonlinear Schrödinger equation. Physica D 87, 314–320 (1995).

    MATH  Article  ADS  Google Scholar 

  8. Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. J. Exp. Theor. Phys. 34, 62–69 (1972).

    MathSciNet  ADS  Google Scholar 

  9. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    MathSciNet  Article  ADS  Google Scholar 

  10. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Article  ADS  Google Scholar 

  11. Wu, J., Keolian, R. & Rudnick, I. Observation of a nonpropagating hydrodynamic soliton. Phys. Rev. Lett. 52, 1421–1424 (1984).

    Article  ADS  Google Scholar 

  12. Denardo, B. et al. Observations of localized structures in nonlinear lattices: domain walls and kinks. Phys. Rev. Lett. 68, 1730–1733 (1992).

    MathSciNet  Article  ADS  Google Scholar 

  13. Kutz, J. N., Kath, W. L., Li, R.-D. & Kumar, P. Long-distance pulse propagation in nonlinear optical fibers by using periodically spaced parametric amplifiers. Opt. Lett. 18, 802–804 (1993).

    Article  ADS  Google Scholar 

  14. Mecozzi, A., Kath, W. L., Kumar, P. & Goedde, C. G. Long-term storage of a soliton bit stream by use of phase-sensitive amplification. Opt. Lett. 19, 2050–2052 (1994).

    Article  ADS  Google Scholar 

  15. Longhi, S. Ultrashort-pulse generation in degenerate optical parametric oscillators. Opt. Lett. 20, 695–697 (1995).

    Article  ADS  Google Scholar 

  16. de Valcárcel, G. J. & Staliunas, K. Phase-bistable Kerr cavity solitons and patterns. Phys. Rev. A 87, 043802 (2013).

    Article  ADS  Google Scholar 

  17. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  18. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    Article  ADS  Google Scholar 

  19. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  20. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  21. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  22. Parra-Rivas, P., Gomila, D., Matías, M. A., Coen, S. & Gelens, L. Dynamics of localized and patterned structures in the Lugiato–Lefever equation determine the stability and shape of optical frequency combs. Phys. Rev. A 89, 043813 (2014).

    Article  ADS  Google Scholar 

  23. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  24. Nozaki, K. & Bekki, N. Chaotic solitons in a plasma driven by an RF field. J. Physical Soc. Japan 54, 2363–2366 (1985).

    Article  ADS  Google Scholar 

  25. Miles, J. W. Parametrically excited solitary waves. J. Fluid Mech. 148, 451–460 (1984).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  26. Trillo, S. & Haelterman, M. Excitation and bistability of self-trapped signal beams in optical parametric oscillators. Opt. Lett. 23, 1514–1516 (1998).

    Article  ADS  Google Scholar 

  27. Wang, Y. et al. Universal mechanism for the binding of temporal cavity solitons. Optica 4, 855–863 (2017).

    Article  ADS  Google Scholar 

  28. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photonics 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  29. Marandi, A., Leindecker, N. C., Vodopyanov, K. L. & Byer, R. L. All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. Opt. Express 20, 19322–19330 (2012).

    Article  ADS  Google Scholar 

  30. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).

    Article  ADS  Google Scholar 

  31. Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019).

    Article  ADS  Google Scholar 

  32. Mosca, S. et al. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett. 121, 093903 (2018).

    Article  ADS  Google Scholar 

  33. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photonics 15, 21–27 (2021).

    Article  ADS  Google Scholar 

  34. Tarasov, N., Perego, A. M., Churkin, D. V., Staliunas, K. & Turitsyn, S. K. Mode-locking via dissipative Faraday instability. Nat. Commun. 7, 12441 (2016).

    Article  ADS  Google Scholar 

  35. Bessin, F. et al. Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun. 10, 4489 (2019).

    Article  ADS  Google Scholar 

  36. Copie, F., Conforti, M., Kudlinski, A., Mussot, A. & Trillo, S. Competing Turing and Faraday instabilities in longitudinally modulated passive resonators. Phys. Rev. Lett. 116, 143901 (2016).

    Article  ADS  Google Scholar 

  37. Bartolini, G. D., Serkland, D. K. & Kumar, P. All-optical storage of a picosecond-pulse packet using parametric amplification. In Optical Amplifiers and Their Applications (eds Zervas, M. et al.) FAW17 (Optical Society of America, 1997).

  38. Pérez-Arjona, I., Roldán, E. & de Valcárcel, G. J. Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons. Phys. Rev. A 75, 063802 (2007).

    Article  ADS  Google Scholar 

  39. Scroggie, A. J. et al. Pattern formation in a passive Kerr cavity. Chaos Solitons Fractals 4, 1323–1354 (1994).

    MATH  Article  ADS  Google Scholar 

  40. Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    Article  ADS  Google Scholar 

  41. De Lucia, F., Keefer, D. W., Corbari, C. & Sazio, P. J. A. Thermal poling of silica optical fibers using liquid electrodes. Opt. Lett. 42, 69–72 (2017).

    Article  ADS  Google Scholar 

  42. Englebert, N., Arabí, C. M., Parra-Rivas, P., Gorza, S.-P. & Leo, F . Temporal solitons in a coherently driven active resonator. Nat. Photonics 15, 536–541 (2021).

    Article  ADS  Google Scholar 

  43. Anderson, M., Leo, F., Coen, S., Erkintalo, M. & Murdoch, S. G. Observations of spatiotemporal instabilities of temporal cavity solitons. Optica 3, 1071–1074 (2016).

    Article  ADS  Google Scholar 

  44. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  45. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  46. Udem, Th., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  47. Li, Z. et al. Experimental observations of bright dissipative cavity solitons and their collapsed snaking in a Kerr resonator with normal dispersion driving. Optica 7, 1195–1203 (2020).

    Article  ADS  Google Scholar 

  48. De Lucia, F. et al. Single is better than double: theoretical and experimental comparison between two thermal poling configurations of optical fibers. Opt. Express 27, 27761–27776 (2019).

    Article  ADS  Google Scholar 

  49. Jang, J. K. et al. Controlled merging and annihilation of localised dissipative structures in an AC-driven damped nonlinear Schrödinger system. New J. Phys. 18, 033034 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Fita Codina for the manufacturing of experimental components and to P. Kockaert and C. Corbari for fruitful discussions. This work was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 757800) and from the Fonds Emile Defay. N.E. acknowledges the support of the Fonds pour la formation á la Recherche dans l’Industrie et dans l’Agriculture (FRIA). F.D.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 842676. F.L. and P.P.-R. acknowledge the support of the Fonds de la Recherche Scientifique (FNRS).

Author information

Authors and Affiliations

Authors

Contributions

N.E. designed and performed the experiments, supervised by S.-P.G. Both F.D.L. and P.-J.S. manufactured the periodically poled fibre. N.E. derived and simulated the mean-field model. P.P.-R. and C.M.A. performed the bifurcation and linear stability analysis of the mean-field model. F.L. supervised the overall project and wrote the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Nicolas Englebert.

Ethics declarations

Competing interests

N.E., S.-P.G. and F.L. have filed patent applications on the active resonator design and its use for frequency conversion (European patent office, application number EP20188731.2). The remaining authors declare no competing interests.

Additional information

Peer review informationNature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–3 and Figs. 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Englebert, N., De Lucia, F., Parra-Rivas, P. et al. Parametrically driven Kerr cavity solitons. Nat. Photon. 15, 857–861 (2021). https://doi.org/10.1038/s41566-021-00858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00858-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing