Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing

Abstract

There has recently been growing interest in integrating and miniaturizing vapour cells to reduce cost, size and power consumption. Hereby we provide a new paradigm in chip-scale-integrated vapour cells by experimentally demonstrating the nanoatomic suspended waveguide, which introduces a nanoscale silicon nitride waveguide suspended in rubidium vapour. By doing so, the properties of the optical modes and the light–vapour interactions are controlled by the waveguide dimensions and can be tailored precisely for specific applications. Compared with previously published atomic cladded waveguides, our new device allows for a substantial reduction of Doppler and transit time broadening and improves the vapour coherence time. Furthermore, it practically eliminates the van der Waals shift and drastically reduces the light shift by two orders of magnitude. We have shown the usefulness of the device as a frequency reference with instability below 50 kHz. The demonstrated approach could also be used for other diverse applications that benefit from accurate and precise light–vapour applications, for example, magnetometry, quantum storage, atomic clocks, high-spatial-resolution field sensors and all-optical switching.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NASWAG device and absorption signatures.
Fig. 2: Van der Waals shift of different NASWAGs and frequency stabilization measurment.
Fig. 3: Velocity selective optical pumping measurement.
Fig. 4: Velocity selective optical pumping measurement with added buffer gas.

Data availability

All data generated or analysed during this study are available within the paper and its Supplementary Information. Further source data will be made available on reasonable request.

Code availability

The Matlab code used to solve the equations presented in the Supplementary Information will be made available on reasonable request.

References

  1. 1.

    Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    Yu, Z., Cui, H. & Sun, X. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities. Photon. Res. 5, B15 (2017).

    Article  Google Scholar 

  4. 4.

    Park, H. et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 15, 6044 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Sun, X. et al. Electrically pumped hybrid evanescent Si/InGaAsP lasers. Opt. Lett. 34, 1345 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    Grajower, M., Mazurski, N., Shappir, J. & Levy, U. Non-volatile silicon photonics using nanoscale flash memory technology. Laser Photon. Rev. 12, 1700190 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Emboras, A. et al. Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 13, 6151–6155 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Emboras, A. et al. Atomic scale plasmonic switch. Nano Lett. 16, 709–714 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Hosseini, M., Sparkes, B. M., Campbell, G., Lam, P. K. & Buchler, B. C. High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174–175 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Ripka, F., Kübler, H., Löw, R. & Pfau, T. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science 362, 446–449 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  18. 18.

    Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    ADS  Article  Google Scholar 

  19. 19.

    Sedlacek, J. A., Schwettmann, A., Kübler, H. & Shaffer, J. P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 111, 063001 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Korth, H. et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb. J. Geophys. Res. Sp. Phys. 121, 7870–7880 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Knappe, S. et al. A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460–1462 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    Loh, W. et al. Microresonator Brillouin laser stabilization using a microfabricated rubidium cell. Opt. Express 24, 14513 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  Google Scholar 

  24. 24.

    Perrella, C., Light, P. S., Vahid, S. A., Benabid, F. & Luiten, A. N. Engineering photon–photon interactions within rubidium-filled waveguides. Phys. Rev. Appl. 9, 044001 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Yang, W. et al. Atomic spectroscopy on a chip. Nat. Photon. 1, 331–335 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Spillane, S. M. et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 1–4 (2008).

    Article  Google Scholar 

  27. 27.

    Stern, L., Grajower, M. & Levy, U. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nat. Commun. 5, 4865 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Stern, L., Grajower, M., Mazurski, N. & Levy, U. Magnetically controlled atomic—plasmonic Fano resonances. Nano Lett. 18, 202–207 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Talker, E., Arora, P., Barash, Y., Stern, L. & Levy, U. Plasmonic-enhanced EIT and velocity selective optical pumping measurements with atomic vapor. ACS Photon. 5, 2609–2616 (2018).

    Article  Google Scholar 

  30. 30.

    Stern, L. & Levy, U. Transmission and time delay properties of an integrated system consisting of atomic vapor cladding on top of a micro ring resonator. Opt. Express 20, 28082 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Stern, L., Desiatov, B., Goykhman, I. & Levy, U. Nanoscale light–matter interactions in atomic cladding waveguides. Nat. Commun. 4, 1548 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Ritter, R. et al. Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett. 107, 041101 (2015).

  33. 33.

    Stern, L., Zektzer, R., Mazurski, N. & Levy, U. Enhanced light–vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor. Laser Photon. Rev. 10, 1016–1022 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Stern, L., Desiatov, B., Mazurski, N. & Levy, U. Strong coupling and high-contrast all-optical modulation in atomic cladding waveguides. Nat. Commun. 8, 14461 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Zektzer, R., Talker, E., Barash, Y., Mazurski, N. & Levy, U. Chiral light–matter interactions in hot vapor-cladded waveguides. Optica 6, 15–18 (2019).

    Article  Google Scholar 

  36. 36.

    Hall, J. L. Stabilized lasers and precision measurements. Science 202, 147–156 (1978).

    ADS  Article  Google Scholar 

  37. 37.

    Ritter, R. et al. Coupling thermal atomic vapor to slot waveguides. Phys. Rev. X 8, 021032 (2018).

    Google Scholar 

  38. 38.

    Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).

    Article  Google Scholar 

  39. 39.

    Allen, J. & Bender, P. Narrow line rubidium magnetometer for high accuracy field measurements. J. Geomagn. Geoelectr. 24, 105–125 (1971).

    ADS  Article  Google Scholar 

  40. 40.

    Robinson, J. T., Chen, L. & Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 16, 4296–4301 (2008).

    Google Scholar 

  41. 41.

    Ducloy, M. Nonlinear selective reflection from an atomic vapor at arbitary incidence abgle. Phys. Rev. A 38, 5197–5205 (1988).

    ADS  Article  Google Scholar 

  42. 42.

    Whittaker, K. A. et al. Optical response of gas-phase atoms at less than λ/80 from a dielectric surface. Phys. Rev. Lett. 112, 253201 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Supplee, J. M., Whittaker, E. A. & Lenth, W. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 33, 6294–6302 (1994).

    ADS  Article  Google Scholar 

  44. 44.

    Bloom, A. L. Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61–68 (1962).

    Article  Google Scholar 

  45. 45.

    Zhao, K. & Wu, Z. Regionally specific hyperfine polarization of Rb atoms in the vicinity (~10–5 cm) of surfaces. Phys. Rev. A 71, 1–14 (2005).

  46. 46.

    Talker, E., Arora, P., Barash, Y., Wilkowski, D. & Levy, U. Efficient optical pumping of alkaline atoms for evanescent fields at dielectric–vapor interfaces. Opt. Express 27, 33445 (2019).

    ADS  Article  Google Scholar 

  47. 47.

    Rotondaro, M. D. & Perram, G. P. Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4. J. Quant. Spectrosc. Radiat. Transf. 57, 497–507 (1997).

    ADS  Article  Google Scholar 

  48. 48.

    Talker, E., Arora, P., Dikopoltsev, M. & Levy, U. Optical isolator based on highly efficient optical pumping of Rb atoms in a miniaturized vapor cell. J. Phys. B 53, 045201 (2020).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Stern and E. Talker for fruitful discussions. The NASWAGS were fabricated at the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem. The research was supported by the European Research Council (ERC-LIVIN 648575), the Israeli Ministry of Science and Technology, and the Israeli Science Foundation.

Author information

Affiliations

Authors

Contributions

R.Z. designed and performed the experiments, analysed the data, designed and fabricated the device and wrote the paper. Y.B. and N.M. fabricated the device. U.L. supervised the project, designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Roy Zektzer or Uriel levy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Juerg Leuthold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Sections 1–5, fabrication and simulation sections.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zektzer, R., Mazurski, N., Barash, Y. et al. Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing. Nat. Photon. 15, 772–779 (2021). https://doi.org/10.1038/s41566-021-00853-4

Download citation

Search

Quick links