Abstract
There has recently been growing interest in integrating and miniaturizing vapour cells to reduce cost, size and power consumption. Hereby we provide a new paradigm in chip-scale-integrated vapour cells by experimentally demonstrating the nanoatomic suspended waveguide, which introduces a nanoscale silicon nitride waveguide suspended in rubidium vapour. By doing so, the properties of the optical modes and the light–vapour interactions are controlled by the waveguide dimensions and can be tailored precisely for specific applications. Compared with previously published atomic cladded waveguides, our new device allows for a substantial reduction of Doppler and transit time broadening and improves the vapour coherence time. Furthermore, it practically eliminates the van der Waals shift and drastically reduces the light shift by two orders of magnitude. We have shown the usefulness of the device as a frequency reference with instability below 50 kHz. The demonstrated approach could also be used for other diverse applications that benefit from accurate and precise light–vapour applications, for example, magnetometry, quantum storage, atomic clocks, high-spatial-resolution field sensors and all-optical switching.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data generated or analysed during this study are available within the paper and its Supplementary Information. Further source data will be made available on reasonable request.
Code availability
The Matlab code used to solve the equations presented in the Supplementary Information will be made available on reasonable request.
References
Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).
Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203 (2006).
Yu, Z., Cui, H. & Sun, X. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities. Photon. Res. 5, B15 (2017).
Park, H. et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 15, 6044 (2007).
Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901 (2009).
Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).
Sun, X. et al. Electrically pumped hybrid evanescent Si/InGaAsP lasers. Opt. Lett. 34, 1345 (2009).
Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).
Grajower, M., Mazurski, N., Shappir, J. & Levy, U. Non-volatile silicon photonics using nanoscale flash memory technology. Laser Photon. Rev. 12, 1700190 (2018).
Emboras, A. et al. Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 13, 6151–6155 (2013).
Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).
Emboras, A. et al. Atomic scale plasmonic switch. Nano Lett. 16, 709–714 (2016).
Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016).
Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).
Hosseini, M., Sparkes, B. M., Campbell, G., Lam, P. K. & Buchler, B. C. High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174–175 (2011).
Ripka, F., Kübler, H., Löw, R. & Pfau, T. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science 362, 446–449 (2018).
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).
Sedlacek, J. A., Schwettmann, A., Kübler, H. & Shaffer, J. P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 111, 063001 (2013).
Korth, H. et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb. J. Geophys. Res. Sp. Phys. 121, 7870–7880 (2016).
Knappe, S. et al. A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460–1462 (2004).
Loh, W. et al. Microresonator Brillouin laser stabilization using a microfabricated rubidium cell. Opt. Express 24, 14513 (2016).
Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).
Perrella, C., Light, P. S., Vahid, S. A., Benabid, F. & Luiten, A. N. Engineering photon–photon interactions within rubidium-filled waveguides. Phys. Rev. Appl. 9, 044001 (2018).
Yang, W. et al. Atomic spectroscopy on a chip. Nat. Photon. 1, 331–335 (2007).
Spillane, S. M. et al. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 1–4 (2008).
Stern, L., Grajower, M. & Levy, U. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nat. Commun. 5, 4865 (2014).
Stern, L., Grajower, M., Mazurski, N. & Levy, U. Magnetically controlled atomic—plasmonic Fano resonances. Nano Lett. 18, 202–207 (2018).
Talker, E., Arora, P., Barash, Y., Stern, L. & Levy, U. Plasmonic-enhanced EIT and velocity selective optical pumping measurements with atomic vapor. ACS Photon. 5, 2609–2616 (2018).
Stern, L. & Levy, U. Transmission and time delay properties of an integrated system consisting of atomic vapor cladding on top of a micro ring resonator. Opt. Express 20, 28082 (2012).
Stern, L., Desiatov, B., Goykhman, I. & Levy, U. Nanoscale light–matter interactions in atomic cladding waveguides. Nat. Commun. 4, 1548 (2013).
Ritter, R. et al. Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett. 107, 041101 (2015).
Stern, L., Zektzer, R., Mazurski, N. & Levy, U. Enhanced light–vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor. Laser Photon. Rev. 10, 1016–1022 (2016).
Stern, L., Desiatov, B., Mazurski, N. & Levy, U. Strong coupling and high-contrast all-optical modulation in atomic cladding waveguides. Nat. Commun. 8, 14461 (2017).
Zektzer, R., Talker, E., Barash, Y., Mazurski, N. & Levy, U. Chiral light–matter interactions in hot vapor-cladded waveguides. Optica 6, 15–18 (2019).
Hall, J. L. Stabilized lasers and precision measurements. Science 202, 147–156 (1978).
Ritter, R. et al. Coupling thermal atomic vapor to slot waveguides. Phys. Rev. X 8, 021032 (2018).
Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).
Allen, J. & Bender, P. Narrow line rubidium magnetometer for high accuracy field measurements. J. Geomagn. Geoelectr. 24, 105–125 (1971).
Robinson, J. T., Chen, L. & Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 16, 4296–4301 (2008).
Ducloy, M. Nonlinear selective reflection from an atomic vapor at arbitary incidence abgle. Phys. Rev. A 38, 5197–5205 (1988).
Whittaker, K. A. et al. Optical response of gas-phase atoms at less than λ/80 from a dielectric surface. Phys. Rev. Lett. 112, 253201 (2014).
Supplee, J. M., Whittaker, E. A. & Lenth, W. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 33, 6294–6302 (1994).
Bloom, A. L. Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61–68 (1962).
Zhao, K. & Wu, Z. Regionally specific hyperfine polarization of Rb atoms in the vicinity (~10–5 cm) of surfaces. Phys. Rev. A 71, 1–14 (2005).
Talker, E., Arora, P., Barash, Y., Wilkowski, D. & Levy, U. Efficient optical pumping of alkaline atoms for evanescent fields at dielectric–vapor interfaces. Opt. Express 27, 33445 (2019).
Rotondaro, M. D. & Perram, G. P. Collisional broadening and shift of the rubidium D1 and D2 lines (52S12 → 52P12, 52P32) by rare gases, H2, D2, N2, CH4 and CF4. J. Quant. Spectrosc. Radiat. Transf. 57, 497–507 (1997).
Talker, E., Arora, P., Dikopoltsev, M. & Levy, U. Optical isolator based on highly efficient optical pumping of Rb atoms in a miniaturized vapor cell. J. Phys. B 53, 045201 (2020).
Acknowledgements
We thank L. Stern and E. Talker for fruitful discussions. The NASWAGS were fabricated at the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem. The research was supported by the European Research Council (ERC-LIVIN 648575), the Israeli Ministry of Science and Technology, and the Israeli Science Foundation.
Author information
Authors and Affiliations
Contributions
R.Z. designed and performed the experiments, analysed the data, designed and fabricated the device and wrote the paper. Y.B. and N.M. fabricated the device. U.L. supervised the project, designed the experiments and wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Photonics thanks Juerg Leuthold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, Sections 1–5, fabrication and simulation sections.
Rights and permissions
About this article
Cite this article
Zektzer, R., Mazurski, N., Barash, Y. et al. Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing. Nat. Photon. 15, 772–779 (2021). https://doi.org/10.1038/s41566-021-00853-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-021-00853-4
This article is cited by
-
MoSe2/WS2 heterojunction photodiode integrated with a silicon nitride waveguide for near infrared light detection with high responsivity
Light: Science & Applications (2023)
-
Vectorial characterization of surface wave via one-dimensional photonic-atomic structure
Scientific Reports (2023)
-
Multifunctional logic gates based on resonant transmission at atomic-plasmonic structure
Scientific Reports (2022)