Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip

An Author Correction to this article was published on 31 August 2021

This article has been updated


Direct phase modulation is one of the most urgent and difficult issues in the terahertz research area. Here, we propose a new method employing a two-dimensional electron gas (2DEG) perturbation microstructure unit coupled to a transmission line to realize high-precision digital terahertz phase manipulation. We induce local perturbation resonances to manipulate the phase of guided terahertz waves. By controlling the electronic transport characteristics of the 2DEG using an external voltage, the strength of the perturbation can be manipulated, which affects the phase of the guided waves. This external control permits electronic manipulation of the phase of terahertz waves with high precision, as high as 2−5° in the frequency range 0.26–0.27 THz, with an average phase error of only 0.36°, corresponding to a timing error of only 4 fs. Critically, the average insertion loss is as low as 6.14 dB at 0.265 THz, with a low amplitude fluctuation of 0.5 dB, so the device offers near-ideal phase-only modulation.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MFPCC architecture and its high-precision terahertz phase manipulation function.
Fig. 2: Perturbation and phase shift of a single 2DEG-PMU with 0 and 1 states.
Fig. 3: Simulation results of electric-field perturbation and phase manipulation of the MFPCC.
Fig. 4: Photographs of the MFPCC and assembled test cavity.
Fig. 5: Experimental measurement results of MFPCC phase manipulation and transmittance.

Data availability

Data are available from the corresponding authors upon request. Source data are provided with this paper.

Change history


  1. Siegel, P. H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).

    Article  ADS  Google Scholar 

  2. Federici, J. F. et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266–S280 (2005).

    Article  Google Scholar 

  3. Wang, L. et al. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 9, 965 (2019).

    Article  Google Scholar 

  4. Chen, Z. et al. A survey on terahertz communications. China Commun. 16, 1–35 (2019).

    Article  ADS  Google Scholar 

  5. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  ADS  Google Scholar 

  6. Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Article  Google Scholar 

  7. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8, 605–609 (2014).

    Article  ADS  Google Scholar 

  8. Dhillon, S. S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D 50, 043001 (2017).

    Article  ADS  Google Scholar 

  9. Chen, H. T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  10. Chen, H. T., O’Hara, J. F., Azad, A. K. & Taylor, A. J. Manipulation of terahertz radiation using metamaterials. Laser Photon. Rev. 5, 513–533 (2011).

    Article  ADS  Google Scholar 

  11. Singh, R., Al-Naib, I. A. I., Koch, M. & Zhang, W. Sharp Fano resonances in THz metamaterials. Opt. Express 19, 6312–6319 (2011).

    Article  ADS  Google Scholar 

  12. Yao, Y. et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13, 1257–1264 (2013).

    Article  ADS  Google Scholar 

  13. Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501–3506 (2015).

    Article  ADS  Google Scholar 

  14. Jessop, D. S. et al. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Appl. Phys. Lett. 108, 171101 (2016).

    Article  ADS  Google Scholar 

  15. Kim, T. T. et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv. Opt. Mater. 6, 1700507 (2018).

    Article  ADS  Google Scholar 

  16. Zhao, Y. et al. High-speed efficient terahertz modulation based on tunable collective–individual state conversion within an active 3 nm two-dimensional electron gas metasurface. Nano Lett. 19, 7588–7597 (2019).

    Article  ADS  Google Scholar 

  17. Karl, N. et al. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Appl. Phys. Lett. 104, 091115 (2014).

    Article  ADS  Google Scholar 

  18. Chen, H. T. et al. A metamaterial solid-state terahertz phase modulator. Nat. Photon. 3, 148–151 (2009).

    Article  ADS  Google Scholar 

  19. Manceau, J. M., Shen, N. H., Kafesaki, M., Soukoulis, C. M. & Tzortzakis, S. Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation. Appl. Phys. Lett. 96, 021111 (2010).

    Article  ADS  Google Scholar 

  20. Shen, N. H. et al. Optically implemented broadband blueshift switch in the terahertz regime. Phys. Rev. Lett. 106, 037403 (2011).

    Article  ADS  Google Scholar 

  21. Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11, 936–941 (2012).

    Article  ADS  Google Scholar 

  22. Urade, Y. et al. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition. Opt. Express 24, 4405–4410 (2016).

    Article  ADS  Google Scholar 

  23. Ji, Y.-Y., Fan, F., Chen, M., Yang, L. & Chang, S.-J. Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice. Opt. Express 25, 11405–11413 (2017).

    Article  ADS  Google Scholar 

  24. Zhou, Z., Wang, S., Yu, Y., Chen, Y. & Feng, L. High performance metamaterials-high electron mobility transistors integrated terahertz modulator. Opt. Express 25, 17832–17840 (2017).

    Article  ADS  Google Scholar 

  25. Zhao, Y. et al. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photonics 5, 3040–3050 (2018).

    Article  Google Scholar 

  26. Zhang, Y. et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface. Nanophotonics 8, 153–170 (2018).

    Article  Google Scholar 

  27. Hu, Y. et al. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv. Opt. Mater. 7, 1901050 (2019).

    Article  Google Scholar 

  28. Kakenov, N., Ergoktas, M. S., Balci, O. & Kocabas, C. Graphene based terahertz phase modulators. 2D Mater 5, 035018 (2018).

    Article  Google Scholar 

  29. Yang, C.-S. et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes. Opt. Lett. 39, 2511–2513 (2014).

    Article  ADS  Google Scholar 

  30. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci. Appl. 3, e218 (2014).

    Article  ADS  Google Scholar 

  31. Zhang, X. G. et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 3, 165–171 (2020).

    Article  ADS  Google Scholar 

  32. Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

    Article  ADS  Google Scholar 

  33. Li, L. et al. Intelligent metasurface imager and recognizer. Light: Sci. Appl. 8, 97 (2019).

    Article  ADS  Google Scholar 

  34. Fu, X., Yang, F., Liu, C., Wu, X. & Cui, T. J. Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces. Adv. Opt. Mater. 8, 1900628 (2020).

    Article  Google Scholar 

  35. Wan, X. et al. Multichannel direct transmissions of near-field information. Light: Sci. Appl. 8, 60 (2019).

    Article  ADS  Google Scholar 

  36. Zhao, J. et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci. Rev. 6, 231–238 (2019).

    Article  Google Scholar 

  37. Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Article  ADS  Google Scholar 

  38. Treizebré, A., Akalin, T. & Bocquet, B. Planar excitation of Goubau transmission lines for THz BioMEMS. IEEE Microw. Wirel. Components Lett. 15, 886–888 (2005).

    Article  Google Scholar 

  39. Jackson, J. D. Classical Electrodynamics 3rd edn (Wiley, 1999).

Download references


This work was supported by the National Natural Science Foundation of China under contract no. 61931006 (Y.Z.), the National Key Research and Development Program of China under contract no. 2018YFB1801503 (Y.Z.), the Fundamental Research Funds for the Central Universities no. ZYGX2020ZB011 (Y.Z.), the China Postdoctoral Science Foundation no. 2020M683285 (H.Z.), the National Natural Science Foundation of China under contracts 61921002 (Y.G.) and U20A20212 (Z.Y.) and the US National Science Foundation grant no. 1923733 (D.M.M.).

Author information

Authors and Affiliations



H.Z., H.L., Z.Y. and Y.Z. conceived the idea of the multichannel field perturbation coding chip. S.L. processed the 2DEG structure, carried out device assembly and constructed the experiment environment. S.G. and F.L. helped with the simulation. H.L. and L.W. performed experiments. L.W., Z.L. performed the data analyses. L.W., Z.L. and X.Z participated in the discussion of potential setups for the tests/measurements, and helped to draft the manuscript. Z.F. and Y.G. helped to improve the design of the metallic cavity and control circuit. D.M.M. contributed substantially to theoretical analysis and manuscript polishing.

Corresponding authors

Correspondence to Yaxin Zhang, Lan Wang or Shixiong Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Juraj Darmo, Yanko Todorov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The Supplementary Discussion has six sections, including Figs. 1–17 and Tables 1–3.

Source data

Source Data Fig. 2

The transmittance and phase response of a single 2DEG-PMU.

Source Data Fig. 3

Simulation results of electric field perturbation and phase manipulation of the MFPCC.

Source Data Fig. 5

Experimental measurement results of MFPCC phase manipulation and transmittance.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Liang, H., Zhang, Y. et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip. Nat. Photon. 15, 751–757 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing