Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock

Abstract

Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour elliptically polarized laser fields, previous experiments have measured the tunnelling rates, exit positions, exit velocities and delay times for some specific electron trajectories, which are mostly created at the field peak instant, that is, when the laser electric field and the formed potential barrier are stationary in terms of the derivative versus time. From the view of wave-particle dualism, the electron phase under a classically forbidden, tunnelling barrier has not been measured, which is at the heart of quantum tunnelling physics. Here we present a robust measurement of tunnelling dynamics including the electron sub-barrier phase and amplitude. We combine the attoclock technique with two-colour phase-of-phase (POP) spectroscopy to accurately calibrate the angular streaking relation and to probe the non-stationary tunnelling dynamics by manipulating a rapidly changing potential barrier. This POP attoclock directly links the measured phase of the two-colour relative phase with the ionization instant for the photoelectron with any final momentum on the detector, allowing us to reconstruct the imaginary tunnelling time and the accumulated phase under the barrier. The POP attoclock provides a general time-resolved approach to accessing the underlying quantum dynamics in intense light–matter interactions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: POP attoclock photoelectron spectroscopy.
Fig. 2: Experimental results of the POP attoclock.
Fig. 3: Calculated POP spectra.
Fig. 4: Sub-barrier tunnelling dynamics.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  2. Eckle, P. et al. Attosecond angular streaking. Nat. Phys. 4, 565–570 (2008).

    Article  Google Scholar 

  3. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Article  Google Scholar 

  4. Torlina, L. et al. Interpreting attoclock measurements of tunnelling times. Nat. Phys. 11, 503–508 (2015).

    Article  Google Scholar 

  5. Sainadh, U. S. et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 568, 75–77 (2019).

    ADS  Article  Google Scholar 

  6. Camus, N. et al. Experimental evidence for quantum tunneling time. Phys. Rev. Lett. 119, 023201 (2017).

    ADS  Article  Google Scholar 

  7. Ni, H., Saalmann, U. & Rost, J.-M. Tunneling ionization time resolved by backpropagation. Phys. Rev. Lett. 117, 023002 (2016).

    ADS  Article  Google Scholar 

  8. Yakaboylu, E., Klaiber, M. & Hatsagortsyan, K. Z. Wigner time delay for tunneling ionization via the electron propagator. Phys. Rev. A 90, 012116 (2014).

    ADS  Article  Google Scholar 

  9. Teeny, N., Yakaboylu, E., Bauke, H. & Keitel, C. H. Ionization time and exit momentum in strong-field tunnel ionization. Phys. Rev. Lett. 116, 063003 (2016).

    ADS  Article  Google Scholar 

  10. Han, M. et al. Unifying tunneling pictures of strong-field ionization with an improved attoclock. Phys. Rev. Lett. 123, 073201 (2019).

    ADS  Article  Google Scholar 

  11. Eicke, N., Brennecke, S. & Lein, M. Attosecond-scale streaking methods for strong-field ionization by tailored fields. Phys. Rev. Lett. 124, 43202 (2020).

    ADS  Article  Google Scholar 

  12. Pedatzur, O. et al. Attosecond tunnelling interferometry. Nat. Phys. 11, 815–819 (2015).

    Article  Google Scholar 

  13. Li, M. et al. Experimental verification of the nonadiabatic effect in strong-field ionization with elliptical polarization. Phys. Rev. A 95, 053425 (2017).

    ADS  Article  Google Scholar 

  14. Eckart, S. et al. Direct experimental access to the nonadiabatic initial momentum offset upon tunnel ionization. Phys. Rev. Lett. 121, 163202 (2018).

    ADS  Article  Google Scholar 

  15. Pfeiffer, A. N. et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nat. Phys. 8, 76–80 (2012).

    Article  Google Scholar 

  16. Han, M. et al. Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable Intensity. Phys. Rev. Lett. 119, 073201 (2017).

  17. Ni, H., Saalmann, U. & Rost, J.-M. Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet. Phys. Rev. A 97, 013426 (2018).

    ADS  Article  Google Scholar 

  18. Skruszewicz, S. et al. Two-color strong-field photoelectron spectroscopy and the phase of the phase. Phys. Rev. Lett. 115, 043001 (2015).

    ADS  Article  Google Scholar 

  19. Almajid, M. A., Zabel, M., Skruszewicz, S., Tiggesbäumker, J. & Bauer, D. Two-color phase-of-the-phase spectroscopy in the multiphoton regime. J. Phys. B 50, 194001 (2017).

    ADS  Article  Google Scholar 

  20. Tulsky, V. A., Almajid, M. A. & Bauer, D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses. Phys. Rev. A 98, 053433 (2018).

    ADS  Article  Google Scholar 

  21. Würzler, D. et al. Accurate retrieval of ionization times by means of the phase-of-the-phase spectroscopy, and its limits. Phys. Rev. A 101, 033416 (2020).

    ADS  Article  Google Scholar 

  22. Tulsky, V. A., Krebs, B., Tiggesbäumker, J. & Bauer, D. Revealing laser-coherent electron features using phase-of-the-phase spectroscopy. J. Phys. B 53, 074001 (2020).

    ADS  Article  Google Scholar 

  23. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

    ADS  Article  Google Scholar 

  24. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003).

    ADS  Article  Google Scholar 

  25. HuP, B., Liu, J. & Chen, S.-g Plateau in above-threshold-ionization spectra and chaotic behavior in rescattering processes. Phys. Lett. A 236, 533–542 (1997).

    ADS  Article  Google Scholar 

  26. Li, M. et al. Subcycle dynamics of coulomb asymmetry in strong elliptical laser fields. Phys. Rev. Lett. 111, 023006 (2013).

    ADS  Article  Google Scholar 

  27. Sun, X. et al. Calibration of the initial longitudinal momentum spread of tunneling ionization. Phys. Rev. A 89, 45402 (2014).

    ADS  Article  Google Scholar 

  28. Milošević, D. B., Paulus, G. G., Bauer, D. & Becker, W. Above-threshold ionization by few-cycle pulses. J. Phys. B 39, R203–R262 (2006).

    ADS  Article  Google Scholar 

  29. V Popruzhenko, S. Keldysh theory of strong field ionization: history, applications, difficulties and perspectives. J. Phys. B 47, 204001 (2014).

    ADS  Article  Google Scholar 

  30. Geng, J.-W. et al. Nonadiabatic tunneling ionization of atoms in elliptically polarized laser fields. J. Phys. B 47, 204027 (2014).

    ADS  Article  Google Scholar 

  31. Han, M., Li, M., Liu, M.-M. & Liu, Y. Tunneling wave packets of atoms from intense elliptically polarized fields in natural geometry. Phys. Rev. A 95, 023406 (2017).

    ADS  Article  Google Scholar 

  32. Barth, I. & Smirnova, O. Nonadiabatic tunneling in circularly polarized laser fields: physical picture and calculations. Phys. Rev. A 84, (2011).

  33. Eckart, S. et al. Ultrafast preparation and detection of ring currents in single atoms. Nat. Phys. 14, 701–704 (2018).

  34. Popruzhenko, S. V. & Bauer, D. Strong field approximation for systems with Coulomb interaction. J. Mod. Opt. 55, 2573 (2008).

    ADS  Article  Google Scholar 

  35. Yan, T.-M., Popruzhenko, S. V., Vrakking, M. J. J. & Bauer, D. Low-energy structures in strong field ionization revealed by quantum orbits. Phys. Rev. Lett. 105, 253002 (2010).

    ADS  Article  Google Scholar 

  36. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    ADS  Article  Google Scholar 

  37. Mosert, V. & Bauer, D. Photoelectron spectra with qprop and t-surff. Comput. Phys. Commun. 207, 452–463 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  38. Han, M., Ge, P., Shao, Y., Gong, Q. & Liu, Y. Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets. Phys. Rev. Lett. 120, 073202 (2018).

    ADS  Article  Google Scholar 

  39. Ivanov, M. Y., Spanner, M. & Smirnova, O. Anatomy of strong field ionization. J. Modern Optics 52, 165–184 (2005).

    ADS  Article  Google Scholar 

  40. Landau, L. D. & Lifschitz, E. M. Quantum Mechanics (Non-relativistic Theory) (Oxford Univ. Press, 1958).

    Google Scholar 

  41. Jordan, I. et al. Attosecond spectroscopy of liquid water. Science 369, 974–979 (2020).

Download references

Acknowledgements

Y.L. acknowledges the finance support by the National Science Foundation of China (grant nos. 92050201, 918850111 and 11774013). M.H. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 801459 (FP-RESOMUS) and the Swiss National Science Foundation through the NCCR MUST.

Author information

Authors and Affiliations

Authors

Contributions

M.H., P.G., and Z.G. performed the experiments. M.H., Y.F. and Y L. analysed and interpreted the data. Simulations were implemented by M. H. This project was coordinated by Y. L.. All authors discussed the results and wrote the paper.

Corresponding author

Correspondence to Yunquan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Karen Hatsagortsyan, Anatoli Kheifets and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Supplementary Video 1

Animated measured angle-resolved energy spectrum in the POP attoclock.

Supplementary Video 2

Animated calculated angle-resolved energy spectrum in the POP attoclock using the CTMC model without including Coulomb potential.

Supplementary Video 3

Animated calculated angle-resolved energy spectrum in the POP attoclock using the CTMC model including Coulomb potential.

Supplementary Video 4

Animated calculated angle-resolved energy spectrum in the POP attoclock using the SFA model by numerical integration method.

Supplementary Video 5

Animated calculated angle-resolved energy spectrum in the POP attoclock using the CCSFA model.

Supplementary Video 6

Animated calculated angle-resolved energy spectrum in the POP attoclock using the TDSE method.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, M., Ge, P., Wang, J. et al. Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock. Nat. Photon. 15, 765–771 (2021). https://doi.org/10.1038/s41566-021-00842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00842-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing