Abstract
Light with spatiotemporal orbital angular momentum (ST-OAM) is a recently discovered type of structured and localized electromagnetic field. This field carries characteristic space–time spiral phase structure and transverse intrinsic OAM. Here, we present the generation and characterization of the second harmonic of ST-OAM pulses. We uncover the conservation of transverse OAM in a second-harmonic generation process, where the space–time topological charge of the fundamental field is doubled along with the optical frequency. Our experiment thus suggests a general ST-OAM nonlinear scaling rule, analogous to that in conventional OAM of light. Furthermore, we observe that the topology of a second-harmonic ST-OAM pulse can be modified by complex spatiotemporal astigmatism, giving rise to multiple phase singularities separated in space and time. Our study opens a new route for nonlinear conversion and scaling of light carrying ST-OAM, with the potential for driving other secondary ST-OAM sources of electromagnetic fields and beyond.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Strong double space-time wave packets using optical parametric amplification
Communications Physics Open Access 21 November 2022
-
Time diffraction-free transverse orbital angular momentum beams
Nature Communications Open Access 11 July 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The datasets utilized to prepare the data presented in this manuscript are available free of charge from the corresponding author under reasonable request.
References
Coullet, P., GIL, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 31–35 (1992).
Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).
Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).
Vaziri, A., Pan, J. W., Jennewein, T., Weihs, G. & Zeilinger, A. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902 (2003).
Wang, B. et al. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 29, 3342–3358 (2021).
Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).
Sukhorukov, A. P. & Yangirova, V. V. Spatio-temporal vortices: properties, generation and recording. Nonlinear Opt. Appl. 5949, 594906 (2005).
Bliokh, K. Y. & Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 86, 033824 (2012).
Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6, 031037 (2016).
Hancock, S. W., Zahedpour, S., Goffin, A. & Milchberg, H. M. Free-space propagation of spatiotemporal optical vortices. Optica 6, 1547–1553 (2019).
Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).
Dholakia, K., Simpson, N. B., Padgett, M. J. & Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, 3742–3745 (1996).
Courtial, J., Dholakia, K., Allen, L. & Padgett, M. J. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre–Gaussian modes. Phys. Rev. A 56, 273–276 (1997).
Hernández-García, C., Picón, A., San Román, J. & Plaja, L. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett. 111, 083602 (2013).
Strohaber, J. et al. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation. Opt. Lett. 37, 3411–3413 (2012).
Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photon. 13, 123–130 (2019).
Bazhenov, V. Y., Soskin, M. S. & Vasnetsov, M. V. Screw dislocations in light wavefronts. J. Mod. Opt. 39, 985–990 (1992).
Esashi, Y. et al. Ptychographic amplitude and phase reconstruction of bichromatic vortex beams. Opt. Express 26, 34007–34015 (2018).
Hickmann, J. M., Fonseca, E. J. S., Soares, W. C. & Chávez-Cerda, S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010).
Hancock, S. W., Zahedpour, S. & Milchberg, H. M. Orbital angular momentum conservation in second- harmonic generation with spatiotemporal optical vortices. In Frontiers in Optics/Laser Science, OSA Technical Digest FM7C.6 (Optical Society of America, 2020).
Berry, M. V. Optical currents. J. Opt. A Pure Appl. Opt 11, 094001 (2009).
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 18, 033026 (2013).
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum, spin and angular momentum in dispersive media. Phys. Rev. Lett. 119, 073901 (2017).
Philbin, T. G. & Allanson, O. Optical angular momentum in dispersive media. Phys. Rev. A 86, 055802 (2012).
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys. 19, 123014 (2017).
Faccio, D. et al. Experimental energy-density flux characterization of ultrashort laser pulse filaments. Opt. Express 17, 8193–8200 (2009).
Lotti, A., Couairon, A., Faccio, D. & Di Trapani, P.Energy-flux characterization of conical and space-time coupled wave packets. Phys. Rev. A 81, 023810 (2010).
Sidick, E., Knoesen, A. & Dienes, A. Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses. J. Opt. Soc. Am. B 12, 1704–1712 (1995).
Sidick, E., Dienes, A. & Knoesen, A. Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses. J. Opt. Soc. Am. B 12, 1713–1722 (1995).
Vieira, J. et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7, 10371 (2016).
Tang, Y. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photon. 14, 658–662 (2020).
Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).
Chen, J., Wan, C., Chong, A. & Zhan, Q. Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum. Opt. Express 28, 18472–18478 (2020).
Acknowledgements
We acknowledge funding from an AFOSR MURI grant (FA9550-16-1-0121). N.J.B. acknowledges support from the National Science Foundation Graduate Research Fellowships (grant no. DGE-1650115).
Author information
Authors and Affiliations
Contributions
C.-T.L. conceived the project. G.G. conducted and designed the experiment. C.-T.L. and G.G. both analysed the data. M.M.M. and H.C.K. proposed the research thrust, supervised the research, developed the generation and measurement capabilities, and applications. All authors contributed to the discussion and writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
M.M.M. and H.C.K. have a financial interest in KMLabs. The other authors declare no competing interests.
Additional information
Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2 and Discussion.
Rights and permissions
About this article
Cite this article
Gui, G., Brooks, N.J., Kapteyn, H.C. et al. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photon. 15, 608–613 (2021). https://doi.org/10.1038/s41566-021-00841-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-021-00841-8
This article is cited by
-
Time diffraction-free transverse orbital angular momentum beams
Nature Communications (2022)
-
Strong double space-time wave packets using optical parametric amplification
Communications Physics (2022)