Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in Brillouin–Mandelstam light-scattering spectroscopy


Recent years have witnessed a much broader use of Brillouin inelastic light-scattering spectroscopy for the investigation of phonons and magnons in novel materials, nanostructures and devices. Driven by the developments in instrumentation and the strong need for accurate knowledge on the energies of elemental excitations, Brillouin–Mandelstam spectroscopy is rapidly becoming an essential technique that is complementary to Raman inelastic light-scattering spectroscopy. We provide an overview of recent progress in the Brillouin light-scattering technique, focusing on the use of this photonic method for the investigation of confined acoustic phonons, phononic metamaterials and magnon propagation and scattering. This Review emphasizes the emerging applications of Brillouin–Mandelstam spectroscopy for phonon-engineered structures and spintronic devices, and concludes with a perspective on future directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fundamentals of Brillouin–Mandelstam light scattering.
Fig. 2: Observation of phonon confinement in nanostructured materials via the BLS technique.
Fig. 3: Phonon spectrum modification in PnCs and PxCs investigated using the BLS technique.
Fig. 4: Investigation of spin waves using BLS.


  1. 1.

    Brillouin, L. Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique. Ann. Phys. 17, 88–122 (1922).

    Article  Google Scholar 

  2. 2.

    Mandelstam, L. Light scattering by inhomogeneous media. Zh. Russ. Fiz. Khim. Ova. 58, 381 (1926).

    Google Scholar 

  3. 3.

    Meng, Z., Traverso, A. J., Ballmann, C. W., Troyanova-Wood, M. A. & Yakovlev, V. V. Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv. Opt. Photonics 8, 300–327 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

    ADS  Article  Google Scholar 

  5. 5.

    Cardona, M. & Merlin, R. in Light Scattering in Solids IX Vol. 108 (eds Cardona, M. & Merlin, R.) Ch. 1 (Springer, 2006).

  6. 6.

    Fabelinskiĭ, I. L. The prediction and discovery of Rayleigh line fine structure. Usp. Fiz. Nauk 170, 107–108 (2000).

    Article  Google Scholar 

  7. 7.

    Fabelinskiĭ, I. L. The discovery of combination scattering of light in Russia and India. Phys. Usp. 46, 1105–1112 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    Gross, E. Change of wave-length of light due to elastic waves at scattering in liquids. Nature 126, 201–202 (1930).

    ADS  MATH  Article  Google Scholar 

  9. 9.

    Gross, E. The splitting of spectral lines at scattering of light by liquids. Nature 126, 400 (1930).

    ADS  MATH  Article  Google Scholar 

  10. 10.

    Gross, E. über Änderung der WellenlÄnge bei Lichtzerstreuung in Kristallen. Z. Phys. 63, 685–687 (1930).

    ADS  Article  Google Scholar 

  11. 11.

    Sandercock, J. R. in Light Scattering in Solids III Vol. 51 (eds Cardona, M. & Güntherodt, G.) 173–206 (Springer, 1982).

  12. 12.

    Scarponi, F. et al. High-performance versatile setup for simultaneous Brillouin–Raman microspectroscopy. Phys. Rev. X 7, 031015 (2017).

    Google Scholar 

  13. 13.

    Speziale, S., Marquardt, H. & Duffy, T. S. Brillouin scattering and its application in geosciences. Rev. Mineral. Geochem. 78, 543–603 (2014).

    Article  Google Scholar 

  14. 14.

    Huang, C. Y. T. et al. Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays. Nanotechnology 31, 30LT01 (2020).

    Article  Google Scholar 

  15. 15.

    Sledzinska, M. et al. 2D phononic crystals: progress and prospects in hypersound and thermal transport engineering. Adv. Funct. Mater. 30, 1904434 (2019).

    Article  Google Scholar 

  16. 16.

    Graczykowski, B. et al. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. Phys. Rev. B 91, 075414 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Yudistira, D. et al. Nanoscale pillar hypersonic surface phononic crystals. Phys. Rev. B 94, 094304 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Rakhymzhanov, A. M. et al. Band structure of cavity-type hypersonic phononic crystals fabricated by femtosecond laser-induced two-photon polymerization. Appl. Phys. Lett. 108, 201901 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Alonso-Redondo, E. et al. Phoxonic hybrid superlattice. ACS Appl. Mater. Interfaces 7, 12488–12495 (2015).

    Article  Google Scholar 

  20. 20.

    Gomopoulos, N. et al. One-dimensional hypersonic phononic crystals. Nano Lett. 10, 980–984 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Schneider, D. et al. Engineering the hypersonic phononic band gap of hybrid Bragg stacks. Nano Lett. 12, 3101–3108 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Parsons, L. C. & Andrews, G. T. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance. J. Appl. Phys. 116, 033510 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Kargar, F. et al. Acoustic phonon dispersion engineering in bulk crystals via incorporation of dopant atoms. Appl. Phys. Lett. 112, 191902 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Kargar, F. et al. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nat. Commun. 7, 13400 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Kuok, M. H., Lim, H. S., Ng, S. C., Liu, N. N. & Wang, Z. K. Brillouin study of the quantization of acoustic modes in nanospheres. Phys. Rev. Lett. 90, 255502 (2003).

    ADS  Article  Google Scholar 

  26. 26.

    Cuffe, J. et al. Phonons in slow motion: dispersion relations in ultrathin Si membranes. Nano Lett. 12, 3569–3573 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Graczykowski, B. et al. Elastic properties of few nanometers thick polycrystalline MoS2 membranes: a nondestructive study. Nano Lett. 17, 7647–7651 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Li, Y. et al. Brillouin study of acoustic phonon confinement in GeO2 nanocubes. Appl. Phys. Lett. 91, 093116 (2007).

    ADS  Article  Google Scholar 

  29. 29.

    Kargar, F. et al. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Appl. Phys. Lett. 107, 171904 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Berrod, Q., Lagrené, K., Ollivier, J. & Zanotti, J.-M. Inelastic and quasi-elastic neutron scattering. Application to soft-matter. EPJ Web Conf. 188, 05001 (2018).

    Article  Google Scholar 

  31. 31.

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    ADS  Article  Google Scholar 

  32. 32.

    Demidov, V. E. et al. Excitation of coherent propagating spin waves by pure spin currents. Nat. Commun. 7, 10446 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Holanda, J., Maior, D. S., Azevedo, A. & Rezende, S. M. Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 14, 500–506 (2018).

    Article  Google Scholar 

  34. 34.

    Cho, J. et al. Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015).

  35. 35.

    Balinskiy, M., Kargar, F., Chiang, H., Balandin, A. A. & Khitun, A. G. Brillouin–Mandelstam spectroscopy of standing spin waves in a ferrite waveguide. AIP Adv. 8, 056017 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Rumyantsev, S., Balinskiy, M., Kargar, F., Khitun, A. & Balandin, A. A. The discrete noise of magnons. Appl. Phys. Lett. 114, 090601 (2019).

    ADS  Article  Google Scholar 

  37. 37.

    Eggleton, B. J., Poulton, C. G., Rakich, P. T., Steel, M. J. & Bahl, G. Brillouin integrated photonics. Nat. Photonics 13, 664–677 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Zarifi, A. et al. Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations. Opt. Lett. 43, 3493–3496 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Boyd, R. W. Nonlinear Optics 4th edn (Elsevier, 2020).

  40. 40.

    Hayes, W. & Loudon, R. Scattering of Light by Crystals (Wiley, 1978).

  41. 41.

    Mutti, P. et al. in Advances in Acoustic Microscopy Vol. 1 (ed. Briggs, A.) 249–300 (Springer, 1995).

  42. 42.

    Bottani, C. E. & Fioretto, D. Brillouin scattering of phonons in complex materials. Adv. Phys. X 3, 607–633 (2018).

    Google Scholar 

  43. 43.

    Olsson, K. S., An, K. & Li, X. Magnon and phonon thermometry with inelastic light scattering. J. Phys. D 51, 133001 (2018).

    ADS  Article  Google Scholar 

  44. 44.

    Loudon, R. Theory of surface-ripple Brillouin scattering by solids. Phys. Rev. Lett. 40, 581–583 (1978).

    ADS  Article  Google Scholar 

  45. 45.

    Balandin, A. A. & Nika, D. L. Phononics in low-dimensional materials. Mater. Today 15, 266–275 (2012).

    Article  Google Scholar 

  46. 46.

    Balandin, A. A. Phononics of graphene and related materials. ACS Nano 14, 5170–5178 (2020).

    Article  Google Scholar 

  47. 47.

    Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Xiao, Y., Chen, Q., Ma, D., Yang, N. & Hao, Q. Phonon transport within periodic porous structures—from classical phonon size effects to wave effects. ES Mater. Manuf. 5, 2–18 (2019).

    Google Scholar 

  49. 49.

    Hussein, M. I., Tsai, C. & Honarvar, H. Thermal conductivity reduction in a nanophononic metamaterial versus a nanophononic crystal: a review and comparative analysis. Adv. Funct. Mater. 30, 1906718 (2020).

    Article  Google Scholar 

  50. 50.

    Djafari-Rouhani, B., El-Jallal, S. & Pennec, Y. Phoxonic crystals and cavity optomechanics. C. R. Phys. 17, 555–564 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Johnson, W. L. et al. Vibrational modes of GaN nanowires in the gigahertz range. Nanotechnology 23, 495709 (2012).

    Article  Google Scholar 

  52. 52.

    Still, T. et al. The ‘music’ of core–shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale. Nano Lett. 8, 3194–3199 (2008).

    ADS  Article  Google Scholar 

  53. 53.

    Sun, J. Y. et al. Hypersonic vibrations of Ag@SiO2 (cubic core)–shell nanospheres. ACS Nano 4, 7692–7698 (2010).

    Article  Google Scholar 

  54. 54.

    Balandin, A. & Wang, K. L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998).

    ADS  Article  Google Scholar 

  55. 55.

    Pokatilov, E. P., Nika, D. L. & Balandin, A. A. Confined electron-confined phonon scattering rates in wurtzite AlN/GaN/AlN heterostructures. J. Appl. Phys. 95, 5626–5632 (2004).

    ADS  Article  Google Scholar 

  56. 56.

    Duval, E. Far-infrared and Raman vibrational transitions of a solid sphere: selection rules. Phys. Rev. B 46, 5795–5797 (1992).

    ADS  Article  Google Scholar 

  57. 57.

    Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys. 2, 388–392 (2006).

    Article  Google Scholar 

  58. 58.

    Pennec, Y. et al. Sensing light and sound velocities of fluids in 2D phoxonic crystal slab. In Proc. IEEE Sensors 355–357 (IEEE, 2014).

  59. 59.

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    ADS  Article  Google Scholar 

  60. 60.

    Garín, M., Solà, M., Julian, A. & Ortega, P. Enabling silicon-on-silicon photonics with pedestalled Mie resonators. Nanoscale 10, 14406–14413 (2018).

    Article  Google Scholar 

  61. 61.

    Sebastian, T., Schultheiss, K., Obry, B., Hillebrands, B. & Schultheiss, H. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Front. Phys. 3, 35 (2015).

    Article  Google Scholar 

  62. 62.

    Madami, M., Gubbiotti, G., Tacchi, S., Carlotti, G. & Stamps, R. L. Application of microfocused Brillouin light scattering to the study of spin waves in low-dimensional magnetic systems. Solid State Phys. 63, 79–150 (2012).

    Article  Google Scholar 

  63. 63.

    Cottam, M. G. & Lockwood, D. J. Light Scattering in Magnetic Solids (Wiley, 1986).

  64. 64.

    Rezende, S. M. Fundamentals of Magnonics Vol. 969 (Springer, 2020)

  65. 65.

    Fleury, P. A. & Loudon, R. Scattering of light by one- and two-magnon excitations. Phys. Rev. 166, 514–530 (1968).

    ADS  Article  Google Scholar 

  66. 66.

    Demidov, V. E. & Demokritov, S. O. Magnonic waveguides studied by microfocus brillouin light scattering. IEEE Trans. Magn. 51, 0800215 (2015).

    Article  Google Scholar 

  67. 67.

    Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001).

    ADS  Article  Google Scholar 

  68. 68.

    Serga, A. A., Schneider, T., Hillebrands, B., Demokritov, S. O. & Kostylev, M. P. Phase-sensitive Brillouin light scattering spectroscopy from spin-wave packets. Appl. Phys. Lett. 89, 063506 (2006).

    ADS  Article  Google Scholar 

  69. 69.

    Vogt, K. et al. All-optical detection of phase fronts of propagating spin waves in a Ni81Fe19 microstripe. Appl. Phys. Lett. 95, 182508 (2009).

    ADS  Article  Google Scholar 

  70. 70.

    Pirro, P. et al. Interference of coherent spin waves in micron-sized ferromagnetic waveguides. Phys. Status Solidi B 248, 2404–2408 (2011).

    ADS  Article  Google Scholar 

  71. 71.

    Vogt, K. et al. Spin waves turning a corner. Appl. Phys. Lett. 101, 042410 (2012).

    ADS  Article  Google Scholar 

  72. 72.

    Vogt, K. et al. Realization of a spin-wave multiplexer. Nat. Commun. 5, 3727 (2014).

    ADS  Article  Google Scholar 

  73. 73.

    Borisenko, I. V. et al. Direct evidence of spatial stability of Bose-Einstein condensate of magnons. Nat. Commun. 11, 1691 (2020).

    ADS  Article  Google Scholar 

  74. 74.

    Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).

    Article  Google Scholar 

  75. 75.

    Ma, X. et al. Interfacial Dzyaloshinskii-Moriya interaction: effect of 5d band filling and correlation with spin mixing conductance. Phys. Rev. Lett. 120, 157204 (2018).

    ADS  Article  Google Scholar 

  76. 76.

    Benguettat-El Mokhtari, I. et al. Interfacial Dzyaloshinskii-Moriya interaction, interface-induced damping and perpendicular magnetic anisotropy in Pt/Co/W based multilayers. J. Appl. Phys. 126, 133902 (2019).

    ADS  Article  Google Scholar 

  77. 77.

    Bouloussa, H. et al. Dzyaloshinskii-Moriya interaction induced asymmetry in dispersion of magnonic Bloch modes. Phys. Rev. B 102, 014412 (2020).

    ADS  Article  Google Scholar 

  78. 78.

    Stashkevich, A. A., Djemia, P., Fetisov, Y. K., Bizière, N. & Fermon, C. High-intensity Brillouin light scattering by spin waves in a permalloy film under microwave resonance pumping. J. Appl. Phys. 102, 103905 (2007).

    ADS  Article  Google Scholar 

  79. 79.

    Demidov, V. E. et al. Generation of the second harmonic by spin waves propagating in microscopic stripes. Phys. Rev. B 83, 054408 (2011).

    ADS  Article  Google Scholar 

  80. 80.

    Demidov, V. E. et al. Nonlinear propagation of spin waves in microscopic magnetic stripes. Phys. Rev. Lett. 102, 177207 (2009).

    ADS  Article  Google Scholar 

  81. 81.

    Jersch, J. et al. Mapping of localized spin-wave excitations by near-field Brillouin light scattering. Appl. Phys. Lett. 97, 152502 (2010).

    ADS  Article  Google Scholar 

  82. 82.

    Rezende, S. M. Theory of coherence in Bose–Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009).

    ADS  Article  Google Scholar 

  83. 83.

    Rüegg, C. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature 423, 62–65 (2003).

    ADS  Article  Google Scholar 

  84. 84.

    Demidov, V. E., Dzyapko, O., Demokritov, S. O., Melkov, G. A. & Slavin, A. N. Observation of spontaneous coherence in Bose–Einstein condensate of magnons. Phys. Rev. Lett. 100, 047205 (2008).

    ADS  Article  Google Scholar 

  85. 85.

    Tupitsyn, I. S., Stamp, P. C. E. & Burin, A. L. Stability of Bose–Einstein condensates of hot magnons in yttrium iron garnet films. Phys. Rev. Lett. 100, 257202 (2008).

    ADS  Article  Google Scholar 

  86. 86.

    Gubbiotti, G. et al. Finite size effects in patterned magnetic permalloy films. J. Appl. Phys. 87, 5633–5635 (2000).

    ADS  Article  Google Scholar 

  87. 87.

    Roussigné, Y., Chérif, S. M., Dugautier, C. & Moch, P. Experimental and theoretical study of quantized spin-wave modes in micrometer-size permalloy wires. Phys. Rev. B 63, 134429 (2001).

    ADS  Article  Google Scholar 

  88. 88.

    Chérif, S. M., Roussigné, Y. E. & Moch, P. Finite-size effects in arrays of permalloy square dots. IEEE Trans. Magn. 38, 2529–2531 (2002).

    ADS  Article  Google Scholar 

  89. 89.

    Gubbiotti, G. et al. Magnetostatic interaction in arrays of nanometric permalloy wires: a magneto-optic Kerr effect and a Brillouin light scattering study. Phys. Rev. B 72, 224413 (2005).

    ADS  Article  Google Scholar 

  90. 90.

    Kargar, F. et al. Brillouin–Mandelstam spectroscopy of stress-modulated spatially confined spin waves in Ni thin films on piezoelectric substrates. J. Magn. Magn. Mater. 501, 166440 (2020).

    Article  Google Scholar 

  91. 91.

    Birt, D. R. et al. Brillouin light scattering spectra as local temperature sensors for thermal magnons and acoustic phonons. Appl. Phys. Lett. 102, 082401 (2013).

    ADS  Article  Google Scholar 

  92. 92.

    Gubbiotti, G. et al. Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D 43, 264003 (2010).

    ADS  Article  Google Scholar 

  93. 93.

    Bailey, M. et al. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: a probe of tissue micromechanics. Sci. Adv. 6, eabc1937 (2020).

    ADS  Article  Google Scholar 

  94. 94.

    Graczykowski, B., Vogel, N., Bley, K., Butt, H.-J. & Fytas, G. Multiband hypersound filtering in two-dimensional colloidal crystals: adhesion, resonances, and periodicity. Nano Lett. 20, 1883–1889 (2020).

    ADS  Article  Google Scholar 

  95. 95.

    Hesami, M. et al. Elastic wave propagation in smooth and wrinkled stratified polymer films. Nanotechnology 30, 045709 (2019).

    ADS  Article  Google Scholar 

  96. 96.

    Graczykowski, B., Gueddida, A., Djafari-Rouhani, B., Butt, H.-J. & Fytas, G. Brillouin light scattering under one-dimensional confinement: symmetry and interference self-canceling. Phys. Rev. B 99, 165431 (2019).

    ADS  Article  Google Scholar 

  97. 97.

    Alonso-Redondo, E. et al. Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction range. Sci Rep. 8, 16986 (2018).

    ADS  Article  Google Scholar 

  98. 98.

    Sato, A. et al. Cavity-type hypersonic phononic crystals. New J. Phys. 14, 113032 (2012).

    ADS  Article  Google Scholar 

  99. 99.

    Koski, K. J., Akhenblit, P., McKiernan, K. & Yarger, J. L. Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262–267 (2013).

    ADS  Article  Google Scholar 

  100. 100.

    Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    Article  Google Scholar 

  101. 101.

    Wu, P. J. et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat. Methods 15, 561–562 (2018).

    Article  Google Scholar 

  102. 102.

    Prevedel, R., Diz-Muñoz, A., Ruocco, G. & Antonacci, G. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods 16, 969–977 (2019).

    Article  Google Scholar 

  103. 103.

    So, P. Brillouin bioimaging. Nat. Photonics 2, 13–14 (2008).

    ADS  Article  Google Scholar 

  104. 104.

    Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2, 39–43 (2008).

    ADS  Article  Google Scholar 

  105. 105.

    Pérez-Cota, F. et al. High resolution 3D imaging of living cells with sub-optical wavelength phonons. Sci Rep. 6, 39326 (2016).

    ADS  Article  Google Scholar 

  106. 106.

    Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

    ADS  Article  Google Scholar 

  107. 107.

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    ADS  Article  Google Scholar 

  108. 108.

    Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).

    ADS  Article  Google Scholar 

  109. 109.

    He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    Article  Google Scholar 

  110. 110.

    Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  111. 111.

    Chen, H., Zhang, W., Niu, Q. & Zhang, L. Chiral phonons in two-dimensional materials. 2D Mater. 6, 012002 (2019).

    Article  Google Scholar 

  112. 112.

    Griffin, A. Brillouin light scattering from crystals in the hydrodynamic region. Rev. Mod. Phys. 40, 167–205 (1968).

    ADS  Article  Google Scholar 

  113. 113.

    Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).

    ADS  Article  Google Scholar 

  114. 114.

    Lee, S. & Li, X. in Nanoscale Energy Transport (ed. Liao, B.) Ch. 1 (IOP, 2020).

  115. 115.

    Aytan, E. et al. Spin–phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett. 111, 252402 (2017).

    ADS  Article  Google Scholar 

  116. 116.

    An, K. et al. Magnons and phonons optically driven out of local equilibrium in a magnetic insulator. Phys. Rev. Lett. 117, 107202 (2016).

    ADS  Article  Google Scholar 

  117. 117.

    Sandercock, J. R. & Wettling, W. Light scattering from thermal acoustic magnons in yttrium iron garnet. Solid State Commun. 13, 1729–1732 (1973).

    ADS  Article  Google Scholar 

  118. 118.

    Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS  Article  Google Scholar 

  119. 119.

    Kargar, F. et al. Phonon and thermal properties of quasi-two-dimensional FePS3 and MnPS3 antiferromagnetic semiconductors. ACS Nano 14, 2424–2435 (2020).

    Article  Google Scholar 

  120. 120.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    ADS  Article  Google Scholar 

Download references


We acknowledge the support of the National Science Foundation (NSF) via a Major Research Instrumentation (MRI) project DMR 2019056 entitled ‘Development of a Cryogenic Integrated Micro-Raman-Brillouin-Mandelstam Spectrometer’. A.A.B. also acknowledges the support of the Designing Materials to Revolutionize and Engineer our Future (DMREF) program via a project DMR-1921958 entitled ‘Collaborative research: data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids’, and the support of the US Department of Energy (DOE) via a project DE-SC0021020 entitled ‘Physical mechanisms and electric-bias control of phase transitions in quasi-2D charge-density-wave quantum materials’. We thank M. Kargar and Z. Barani for their help with the preparation of schematics in Figs. 1e and 3a.

Author information



Corresponding author

Correspondence to Fariborz Kargar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Sergej Demokritov, Benjamin Eggleton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kargar, F., Balandin, A.A. Advances in Brillouin–Mandelstam light-scattering spectroscopy. Nat. Photon. 15, 720–731 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing