Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale terahertz scanning probe microscopy

Abstract

Terahertz radiation has become an important diagnostic tool in the development of new technologies. However, the diffraction limit prevents terahertz radiation (λ ≈ 0.01–3 mm) from being focused to the nanometre length scale of modern devices. In response to this challenge, terahertz scanning probe microscopy techniques based on coupling terahertz radiation to subwavelength probes such as sharp tips have been developed. These probes enhance and confine the light, improving the spatial resolution of terahertz experiments by up to six orders of magnitude. In this Review, we survey terahertz scanning probe microscopy techniques that achieve spatial resolution on the scale of micrometres to ångströms, with particular emphasis on their overarching approaches and underlying probing mechanisms. Finally, we forecast the next steps in the field.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Zooming in on surfaces with terahertz microscopy.
Fig. 2: Scattering-type scanning near-field terahertz microscopy.
Fig. 3: Alternate tip-based terahertz near-field nanoscopy techniques.
Fig. 4: Ultrafast THz-STM imaging at nano and atomic scales.

References

  1. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).

    ADS  Article  Google Scholar 

  2. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    ADS  Article  Google Scholar 

  3. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    ADS  Article  Google Scholar 

  4. Joyce, H. J., Boland, J. L., Davies, C. L., Baig, S. A. & Johnston, M. B. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Technol. 31, 103003 (2016).

    ADS  Article  Google Scholar 

  5. Dhillon, S. S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D 50, 043001 (2017).

    ADS  Article  Google Scholar 

  6. Spies, J. A. et al. Terahertz spectroscopy of emerging materials. J. Phys. Chem. C 124, 22335 (2020).

    Article  Google Scholar 

  7. Ponseca, C. S. Jr., Chábera, P., Uhlig, J., Persson, P. & Sundström, V. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940–11024 (2017).

    Article  Google Scholar 

  8. Lan, Y. et al. Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. Sci. Adv. 5, eaaw5558 (2019).

    ADS  Article  Google Scholar 

  9. Kužel, P. & Nĕmec, H. Terahertz conductivity in nanoscaled systems: effective medium theory aspects. J. Phys. D 47, 374005 (2014).

    Article  Google Scholar 

  10. Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205349 (2017).

    Article  Google Scholar 

  11. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).

    ADS  Article  Google Scholar 

  12. Novotny, L. The history of near-field optics. Prog. Opt. 50, 137–180 (2007).

    ADS  Article  Google Scholar 

  13. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  14. Keiser, G. R. & Klarskov, P. Terahertz field confinement in nonlinear metamaterials and near-field imaging. Photonics 6, 22 (2019).

    Article  Google Scholar 

  15. Kiwa, T., Tonouchi, M., Yamashita, M. & Kawase, K. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Opt. Lett. 28, 2058–2060 (2003).

    ADS  Article  Google Scholar 

  16. van der Valk, N. C. J. & Planken, P. C. M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip. Appl. Phys. Lett. 81, 1558–1560 (2002).

    ADS  Article  Google Scholar 

  17. Adam, A. J. L. et al. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures. Opt. Express 16, 7407–7417 (2008).

    ADS  Article  Google Scholar 

  18. Blanchard, F. & Tanaka, K. Improving time and space resolution in electro-optic sampling for near-field terahertz imaging. Opt. Lett. 41, 4645–4648 (2016).

    ADS  Article  Google Scholar 

  19. Knab, J. R., Adam, A. J. L., Shaner, E., Starmans, H. J. A. J. & Planken, P. C. M. Terahertz near-field spectroscopy of filled subwavelength sized apertures in thin metal films. Opt. Express 21, 1101–1112 (2013).

    ADS  Article  Google Scholar 

  20. Niessen, K. A. et al. Protein and RNA dynamical fingerprinting. Nat. Commun. 10, 1026 (2019).

    ADS  Article  Google Scholar 

  21. Mitrofanov, O. et al. Terahertz pulse propagation through small apertures. Appl. Phys. Lett. 79, 907–909 (2001).

    ADS  Article  Google Scholar 

  22. Macfaden, A. J., Reno, J. L., Brener, I. & Mitrofanov, O. 3 μm aperture probes for near-field terahertz transmission microscopy. Appl. Phys. Lett. 104, 011110 (2014).

    ADS  Article  Google Scholar 

  23. Kawano, Y. & Ishibashi, K. An on-chip near-field terahertz probe and detector. Nat. Photon. 2, 618–621 (2008).

    Article  Google Scholar 

  24. Mitrofanov, O. et al. Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging. Sci. Rep. 7, 44240 (2017).

    ADS  Article  Google Scholar 

  25. Wächter, M., Nagel, M. & Kurz, H. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution. Appl. Phys. Lett. 95, 041112 (2009).

    ADS  Article  Google Scholar 

  26. Bhattacherya, A. & Gómez Rivas, J. Full vectorial mapping of the complex electric near-fields of THz resonators. APL Photon. 1, 086103 (2016).

    ADS  Article  Google Scholar 

  27. Kawata, S. & Inouye, Y. Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy 57, 313–317 (1995).

    Article  Google Scholar 

  28. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995).

    ADS  Article  Google Scholar 

  29. Lahrech, A., Bachelot, R., Gleyzes, P. & Boccara, A. C. Infrared-reflection-mode near-field microscopy using an apertureless probe with resolution of λ/600. Opt. Lett. 21, 1315–1317 (1996).

    ADS  Article  Google Scholar 

  30. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    ADS  Article  Google Scholar 

  31. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000).

    ADS  Article  Google Scholar 

  32. Knoll, B. & Keilmann, F. Infrared conductivity mapping for nanoelectronics. Appl. Phys. Lett. 77, 3980 (2000).

    ADS  Article  Google Scholar 

  33. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    ADS  Article  Google Scholar 

  34. Chen, H.-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).

    ADS  Article  Google Scholar 

  35. Wang, K., Mittleman, D. M., van der Valk, N. C. J. & Planken, P. C. M. Antenna effects in terahertz apertureless near-field optical microscopy. Appl. Phys. Lett. 85, 2715–2717 (2004).

    ADS  Article  Google Scholar 

  36. Buersgens, F., Kersting, R. & Chen, H.-T. Terahertz microscopy of charge carriers in semiconductors. Appl. Phys. Lett. 88, 112115 (2006).

    ADS  Article  Google Scholar 

  37. von Ribbeck, H.-G. et al. Spectroscopic THz near-field microscope. Opt. Express 16, 3430–3438 (2008).

    ADS  Article  Google Scholar 

  38. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    ADS  Article  Google Scholar 

  39. Mastel, S. et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 17, 6526–6533 (2017).

    ADS  Article  Google Scholar 

  40. Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279–1288 (2019).

    Article  Google Scholar 

  41. Siday, T., Hale, L. L., Hermans, R. I. & Mitrofanov, O. Resonance-enhanced terahertz nanoscopy probes. ACS Photon. 7, 596–601 (2020).

    Article  Google Scholar 

  42. Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020).

    Article  Google Scholar 

  43. Giordano, M. C. et al. Phase-resolved terahertz self-detection near-field microscopy. Opt. Express 26, 18423–18435 (2018).

    ADS  Article  Google Scholar 

  44. Jacob, R. et al. Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy. Nano Lett. 12, 4336–4340 (2012).

    ADS  Article  Google Scholar 

  45. Kuschewski, F. et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 108, 113102 (2016).

    ADS  Article  Google Scholar 

  46. Liewald, C. et al. All-electronic terahertz nanoscopy. Optica 5, 159–162 (2018).

    ADS  Article  Google Scholar 

  47. Chen, X. et al. THz near-field imaging of extreme subwavelength metal structures. ACS Photon. 7, 687–694 (2020).

    Article  Google Scholar 

  48. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS  Article  Google Scholar 

  49. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352–355 (2011).

    ADS  Article  Google Scholar 

  50. Khatib, O., Bechtel, H. A., Martin, M. C., Raschke, M. B. & Carr, G. L. Far infrared synchrotron near-field nanoimaging and nanospectroscopy. ACS Photon. 5, 2773–2779 (2018).

    Article  Google Scholar 

  51. Moon, K. et al. Subsurface nanoimaging by broadband terahertz pulse nearfield microscopy. Nano Lett. 15, 549–552 (2014).

    ADS  Article  Google Scholar 

  52. Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    ADS  Article  Google Scholar 

  53. Zhang, J. et al. Terahertz nanoimaging of graphene. ACS Photon. 5, 2645–2651 (2018).

    Article  Google Scholar 

  54. Aghamiri, N. A. et al. Hyperspectral time-domain terahertz nanoimaging. Opt. Express 27, 24231–24242 (2019).

    ADS  Article  Google Scholar 

  55. Moon, K. et al. Computed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivity. Sci. Adv. 9, 16915 (2019).

    Google Scholar 

  56. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014).

    ADS  Article  Google Scholar 

  57. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved intrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    ADS  Article  Google Scholar 

  58. Yao, Z. et al. Photo-induced terahertz near-field dynamics of graphene/InAs heterostructures. Opt. Express 27, 13611–13623 (2019).

    ADS  Article  Google Scholar 

  59. Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope. Rev. Sci. Instrum. 84, 023701 (2013).

    ADS  Article  Google Scholar 

  60. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2016).

    Article  Google Scholar 

  61. Lang, D. et al. Infrared nanoscopy down to liquid helium temperatures. Rev. Sci. Instrum. 89, 033702 (2018).

    ADS  Article  Google Scholar 

  62. Weng, Q. et al. Imaging of nonlocal hot-electron energy dissipation via shot noise. Science 360, 775–778 (2018).

    Article  Google Scholar 

  63. de Wilde, Y. et al. Thermal radiation scanning tunnelling microscopy. Nature 444, 740–743 (2006).

    ADS  Article  Google Scholar 

  64. Komiyama, S. Perspective: nanoscopy of charge kinetics via terahertz fluctuation. J. Appl. Phys. 125, 010901 (2019).

    ADS  Article  Google Scholar 

  65. Lin, K.-T., Komiyama, S., Kim, S., Kawamura, K. & Kajihara, Y. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat. Rev. Sci. Instrum. 88, 013706 (2017).

    ADS  Article  Google Scholar 

  66. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Article  Google Scholar 

  67. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Article  Google Scholar 

  68. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).

    Article  Google Scholar 

  69. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    ADS  Article  Google Scholar 

  70. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    ADS  Article  Google Scholar 

  71. Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photonics 4, 2676–2680 (2017).

    Article  Google Scholar 

  72. Pizzuto, A., Mittleman, D. M. & Klarskov, P. Laser THz emission nanoscopy and THz nanoscopy. Opt. Express 28, 18778–18789 (2020).

    ADS  Article  Google Scholar 

  73. Schumacher, Z. et al. Nanoscale force sensing of an ultrafast nonlinear optical response. Proc. Natl Acad. Sci. USA 117, 19773–19779 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  74. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    ADS  Article  Google Scholar 

  75. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  76. Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photon. 10, 762–765 (2016).

    ADS  Article  Google Scholar 

  77. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    ADS  Article  Google Scholar 

  78. Yoshida, S. et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field. ACS Photon. 6, 1356–1364 (2019).

    Article  Google Scholar 

  79. Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020).

    ADS  Article  Google Scholar 

  80. Tian, Y., Yang, F., Guo, C. & Jiang, Y. Recent advances in ultrafast time-resolved scanning tunneling microscopy. Surf. Rev. Lett. 25, 1841003 (2018).

    ADS  Article  Google Scholar 

  81. Chen, C. J. Introduction to Scanning Tunneling Microscopy 2nd edn (Oxford Univ. Press, 2008).

  82. Jelic, V. et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 13, 591–598 (2017).

    Article  Google Scholar 

  83. Luo, Y. et al. Nanoscale terahertz STM imaging of a metal surface. Phys. Rev. B 102, 205417 (2020).

    ADS  Article  Google Scholar 

  84. Nguyen, P. H. et al. Coupling terahertz pulses to a scanning tunneling microscope. Phys. Can. 71, 157–160 (2015).

    Google Scholar 

  85. Yoshioka, K. et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields. Nano Lett. 18, 5198–5204 (2018).

    ADS  Article  Google Scholar 

  86. Müller, M., Sabanés, N. M., Kampfrath, T. & Wolf, M. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction. ACS Photon. 7, 2046–2055 (2020).

    Article  Google Scholar 

  87. Peller, D. et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photon. 15, 143–147 (2021).

    ADS  Article  Google Scholar 

  88. Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article  Google Scholar 

  89. Du, S., Yoshida, K., Zhang, Y., Hamada, I. & Hirakawa, K. Terahertz dynamics of electron-vibron coupling in single molecules with tunable electrostatic potential. Nat. Photon. 12, 608–612 (2018).

    ADS  Article  Google Scholar 

  90. Kang, T., Bahk, Y.-M. & Kim, D.-S. Terahertz quantum plasmonics at nanoscales and angstrom scales. Nanophotonics 9, 435–451 (2020).

    ADS  Article  Google Scholar 

  91. Lange, S. L., Noori, N. K., Kristensen, T. M. B., Steenberg, K. & Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 128, 070901 (2020).

    ADS  Article  Google Scholar 

  92. Yarotski, D. A. et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots. J. Opt. Soc. Am. B 19, 1480–1484 (2002).

    ADS  Article  Google Scholar 

  93. Shi, T., Cirac, J. I. & Demler, E. Ultrafast molecular dynamics in terahertz-STM experiments: theoretical analysis using Anderson-Holstein model. Phys. Rev. Res. 2, 033379 (2020).

    Article  Google Scholar 

  94. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (2013).

    ADS  Article  Google Scholar 

  95. Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonc nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11, 459–464 (2016).

    ADS  Article  Google Scholar 

  96. Lang, D. et al. Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy. Nanotechnology 30, 084003 (2019).

    ADS  Article  Google Scholar 

  97. Kwok, Y., Chen, G. & Mukamel, S. STM imaging of electron migration in real space and time: a simulation study. Nano Lett. 19, 7006–7012 (2019).

    ADS  Article  Google Scholar 

  98. Frankerl, M. & Donarini, A. Spin-orbit interaction induces charge beatings in a lightwave-STM–single molecule junction. Phys. Rev. B 103, 085420 (2021).

    ADS  Article  Google Scholar 

  99. Yoshida, S. et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations. ACS Photon. 8, 315–323 (2021).

    Article  Google Scholar 

  100. Kimura, K. et al. Terahertz-field-driven scanning tunneling luminescence spectroscopy. ACS Photon. 8, 982–987 (2021).

    Article  Google Scholar 

  101. Abdo, M. et al. Variable repetition rate THz source for ultrafast scanning tunneling microscopy. ACS Photon. 8, 702–708 (2021).

    Article  Google Scholar 

  102. Peplow, M. The next big hit in molecule Hollywood. Nature 544, 408–410 (2017).

    ADS  Article  Google Scholar 

  103. Geaney, S. et al. Near-field scanning microwave microscopy in the single photon regime. Sci. Rep. 9, 12539 (2019).

    ADS  Article  Google Scholar 

  104. Li, S. & Jones, R. R. High-energy electron emission from metallic nanotips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016).

    ADS  Article  Google Scholar 

  105. Matte, D. et al. Extreme lightwave electron field emission from a nanotip. Phys. Rev. Res. 3, 013137 (2021).

    Article  Google Scholar 

  106. Völcker, M., Krieger, W. & Walther, H. Laser-driven scanning tunneling microscope. Phys. Rev. Lett. 66, 1717–1720 (1991).

    ADS  Article  Google Scholar 

  107. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–670 (2016).

    ADS  Article  Google Scholar 

  108. Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunnelling microscopy. Science 367, 411–415 (2020).

    ADS  Article  Google Scholar 

  109. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    ADS  Article  Google Scholar 

  110. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    ADS  Article  Google Scholar 

  111. Taubner, T., Hillenbrand, R. & Keilmann, F. Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Appl. Phys. Lett. 85, 5064–5066 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Mester (CIC nanoGUNE BRTA) for the preparation of panel e of the figure in Box 1. T.L.C. acknowledges financial support from the Department of the Navy, Office of Naval Research (ONR award number N00014−19-1-2051) and the Cowen Family Endowment. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project number RTI2018-094830-B-100 and project number MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant number IT1164-19). F.A.H. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI) and the Alberta Innovates Technology Futures (AITF) Strategic Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Cocker.

Ethics declarations

Competing interests

R.H. is a co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems, such as the ones described in this Review. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Mengkun Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cocker, T.L., Jelic, V., Hillenbrand, R. et al. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021). https://doi.org/10.1038/s41566-021-00835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00835-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing