Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconfigurable electronic circuits for magnetic fields controlled by structured light


Dynamic control over the conduction band electrons of a semiconductor is a central technological pursuit. Beyond electronic circuitry, flexible control over the spatial and temporal character of semiconductor currents enables precise spatiotemporal structuring of magnetic fields. Despite their importance in science and technology, the control of magnetic fields at the micrometre spatial scale and femtosecond temporal scale using conventional electromagnets remains challenging. Here, we apply structured light beams to interfering photoexcitation pathways in gallium arsenide to sculpt the spatial and momentum configuration of its conduction band population. Programmable control over several hundred micrometre-scale current elements is achieved by manipulating the wavefronts of an optical beam using a spatial light modulator, enabling vast flexibility in the excited current patterns. Using this platform, we demonstrate dynamic optoelectronic interconnects, circuits for spatially tailored magnetic fields and magnetic field lattices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transverse vectorial control of current pixels.
Fig. 2: Reconfigurable optoelectronic interconnects.
Fig. 3: Spatially tailored magnetic fields.
Fig. 4: Magnetic field lattices.

Data availability

The raw data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewksi, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).

    ADS  Article  Google Scholar 

  2. 2.

    Atanasov, R., Haché, A., Hughes, J. L. P., van Driel, H. M. & Sipe, J. E. Coherent control of photocurrent injection in bulk semiconductors. Phys. Rev. Lett. 76, 1703–1706 (1996).

    ADS  Article  Google Scholar 

  3. 3.

    Haché, A., Sipe, J. E. & van Driel, H. M. Quantum interference control of electrical currents in GaAs. IEEE J. Quantum Electron. 34, 1144–1154 (1998).

    ADS  Article  Google Scholar 

  4. 4.

    Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 1144–1154 (1998).

    Google Scholar 

  5. 5.

    Auston, D. H. Ultrafast optoelectronics. Top. Appl. Phys. 60, 183–233 (1988).

    Google Scholar 

  6. 6.

    Belinicher, V. I. & Sturman, B. I. The photogalvanic effect in media lacking a center of symmetry. Sov. Phys. Usp. 23, 199–223 (1980).

    ADS  Article  Google Scholar 

  7. 7.

    Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Côté, D., Laman, N. & van Driel, H. M. Rectification and shift currents in GaAs. Appl. Phys. Lett. 80, 905–907 (2002).

    ADS  Article  Google Scholar 

  9. 9.

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Sederberg, S. et al. Attosecond optoelectronic field measurement in solids. Nat. Commun. 11, 430 (2020).

    ADS  Article  Google Scholar 

  12. 12.

    Forbes, A. Sculpting electric currents with structured light. Nat. Photon. 14, 656–657 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Shapiro, M. & Brumer, P. Quantum Control of Molecular Processes (Wiley, 2012).

  14. 14.

    Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).

    Article  Google Scholar 

  17. 17.

    Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    ADS  Article  Google Scholar 

  18. 18.

    Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Hammond, T. J., Villeneuve, D. M. & Corkum, P. B. Producing and controlling half-cycle near-infrared electric-field transients. Optica 4, 826–830 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photon. 14, 680–685 (2020).

    ADS  Article  Google Scholar 

  21. 21.

    Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Bhat, R. D. R. & Sipe, J. E. Optically injected spin currents in semiconductors. Phys. Rev. Lett. 85, 5432–5435 (2000).

    ADS  Article  Google Scholar 

  24. 24.

    Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    ADS  Article  Google Scholar 

  25. 25.

    Erni, R., Rossell, M. D., Kisielowksi, C. & Dahmen, U. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980).

    Google Scholar 

  27. 27.

    Murphy, J. B. & Pellegrini, C. Free electron lasers for the XUV spectral region. Nucl. Instrum. Methods Phys. Res. A 237, 159–167 (1985).

    ADS  Article  Google Scholar 

  28. 28.

    Fiederling, R. et al. Injection and detection of a spin-polarized current in light-emitting diode. Nature 402, 787–790 (1999).

    ADS  Article  Google Scholar 

  29. 29.

    Zutic, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    ADS  Article  Google Scholar 

  30. 30.

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    ADS  Article  Google Scholar 

  31. 31.

    Pritchard, D. E. Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336–1339 (1983).

    ADS  Article  Google Scholar 

  32. 32.

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Leitenstorfer, A., Fürst, C., Laubereau, A. & Kaiser, W. Femtosecond carrier dynamics in GaAs far from equilibrium. Phys. Rev. Lett. 76, 1545–1548 (1996).

    ADS  Article  Google Scholar 

  34. 34.

    Sederberg, S., Kong, F. & Corkum, P. B. Tesla-scale terahertz magnetic impulses. Phys. Rev. X 10, 011063 (2020).

    Google Scholar 

  35. 35.

    Walowski, J. & Münzenberg, M. Ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016).

    ADS  Article  Google Scholar 

Download references


This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program (P.B.C.), the Canada Research Chairs Program (P.B.C.), the United States Defense Advanced Research Projects Agency (‘Topological Excitations in Electronics (TEE)’, agreement #D18AC00011, P.B.C.) and the United States Army Research Office (award no. W911NF-19-1-0211, P.B.C.).

Author information




P.B.C., F.K. and S.S. conceived the idea. K.J., K.R.H. and S.S. performed the measurements. S.S. analysed the data and wrote the first draft of the manuscript. P.B.C. and S.S. supervised the experiments. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to S. Sederberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Photonics thanks Andrea Alu, Andrew Forbes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and notes 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jana, K., Herperger, K.R., Kong, F. et al. Reconfigurable electronic circuits for magnetic fields controlled by structured light. Nat. Photon. 15, 622–626 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing