Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mid-infrared semimetal polarization detectors with configurable polarity transition

Abstract

On-chip polarization-sensitive photodetectors offer unique opportunities for next-generation ultra-compact polarimeters. So far, mainstream approaches have relied on the anisotropic absorption of natural materials or artificial structures. However, such a model is inherently restricted by correlation between the polarization ratio (PR) and diattenuation, leading to small PR values (1 < PR < 10). Here, we report nanoantenna-mediated semimetal photodetectors, which enable configurable polarity transition by exploiting the vectorial and non-local photoresponse in semimetals. By tuning the orientation of nanoantennas, PR values vary from positive (unipolar regime) to negative (bipolar regime), covering all possible numbers (1 → ∞/−∞ → −1). In particular, the PR values at the polarity-transition point could approach infinity. Such a polarity transition hereby transcends the conventional PR–diattenuation relationship. Furthermore, our device allows the subtle measurement of polarization-angle perturbation down to 0.02° Hz−1/2 in the mid-infrared range. Our findings highlight the potential of semimetals as a promising material platform for miniaturized polarimetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design principles and main results of our designed nanoantenna-mediated semimetal photodetectors.
Fig. 2: Polarization- and orientation-dependent photoresponse in tapered nanoantennas on graphene.
Fig. 3: Geometrically tunable transition of polarization dependence.
Fig. 4: Electrically tunable transition of polarization dependence.
Fig. 5: Measurement of small polarization-angle perturbation.

Similar content being viewed by others

Data availability

All technical details for producing the figures are enclosed in the Supplementary Information. Data are available from the corresponding authors C.-W.Q. or C.L. upon request.

Code availability

All technical details for implementing the simulation of nanoantenna-driven photocurrents in graphene are enclosed in the Supplementary Information. Python codes are available from the corresponding authors C.-W.Q. or C.L. upon request.

References

  1. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  ADS  Google Scholar 

  2. Graydon, O. Global position by polarization. Nat. Photonics 12, 318–318 (2018).

    Article  ADS  Google Scholar 

  3. Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006).

    Article  ADS  Google Scholar 

  4. Martínez, A. Polarimetry enabled by nanophotonics. Science 362, 750–751 (2018).

    Article  ADS  Google Scholar 

  5. Lepetit, T. & Kanté, B. Simultaneous Stokes parameters. Nat. Photonics 9, 709–710 (2015).

    Article  ADS  Google Scholar 

  6. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).

    Article  ADS  Google Scholar 

  7. Gruev, V., Perkins, R. & York, T. CCD polarization imaging sensor with aluminum nanowire optical filters. Opt. Express 18, 19087–19094 (2010).

    Article  ADS  Google Scholar 

  8. Maruyama, Y. et al. 3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels. IEEE Trans. Electron Devices 65, 2544–2551 (2018).

    Article  ADS  Google Scholar 

  9. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Article  ADS  Google Scholar 

  10. Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601–607 (2018).

    Article  ADS  Google Scholar 

  11. Tong, L. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 11, 2308 (2020).

    Article  ADS  Google Scholar 

  12. Guo, Q. et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 17, 986–992 (2018).

    Article  ADS  Google Scholar 

  13. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Article  ADS  Google Scholar 

  14. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  15. Afshinmanesh, F., White, J. S., Cai, W. & Brongersma, M. L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 1, 125–129 (2012).

    Article  ADS  Google Scholar 

  16. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  ADS  Google Scholar 

  17. Singh, A. et al. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett. 7, 2999–3006 (2007).

    Article  ADS  Google Scholar 

  18. Feng, J. et al. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 29, 1605993 (2017).

    Article  Google Scholar 

  19. Xiao, M. et al. Symmetry-reduction enhanced polarization-sensitive photodetection in core–shell SbI3/Sb2O3 van der Waals heterostructure. Small 16, 1907172 (2020).

    Article  Google Scholar 

  20. Wang, X. et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 139, 14976–14982 (2017).

    Article  Google Scholar 

  21. Hong, T. et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014).

    Article  ADS  Google Scholar 

  22. Yang, Y. et al. Polarization‐sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 29, 1900411 (2019).

    Article  Google Scholar 

  23. Peng, Y. et al. Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light detection. Angew. Chem. Int. Ed. 59, 3933–3937 (2020).

    Article  Google Scholar 

  24. Venuthurumilli, P. K., Ye, P. D. & Xu, X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12, 4861–4867 (2018).

    Article  Google Scholar 

  25. Wu, D. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019).

    Article  Google Scholar 

  26. Zeng, L. et al. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6, 1901134 (2019).

    Article  Google Scholar 

  27. Pi, L. et al. Highly in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity. Adv. Funct. Mater. 31, 2006774 (2020).

    Article  Google Scholar 

  28. Kim, D. J. & Alexe, M. Bulk photovoltaic effect in monodomain BiFeO3 thin films. Appl. Phys. Lett. 110, 183902 (2017).

    Article  ADS  Google Scholar 

  29. Bhatnagar, A., Roy Chaudhuri, A., Heon Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).

    Article  ADS  Google Scholar 

  30. Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article  ADS  Google Scholar 

  31. Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    Article  ADS  Google Scholar 

  32. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  33. Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  34. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  35. Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    Article  ADS  Google Scholar 

  36. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  ADS  Google Scholar 

  37. Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).

    Article  ADS  Google Scholar 

  38. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  39. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  ADS  Google Scholar 

  40. Yao, Y. et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 14, 3749–3754 (2014).

    Article  ADS  Google Scholar 

  41. Wang, D. et al. Enhancing the graphene photocurrent using surface plasmons and a p-n junction. Light Sci. Appl. 9, 126 (2020).

    Article  ADS  Google Scholar 

  42. Song, J. C. W. & Levitov, L. S. Shockley-Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article  ADS  Google Scholar 

  43. Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).

    Article  ADS  Google Scholar 

  44. Liu, J., Xia, F., Xiao, D., García de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).

    Article  Google Scholar 

  45. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  ADS  Google Scholar 

  46. Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    Article  ADS  Google Scholar 

  47. Sturman, B. I. & Fridkin, V. M. Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials Vol. 8 (CRC, 1992).

  48. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).

    Article  Google Scholar 

  49. Tomberg, T., Muraviev, A., Ru, Q. & Vodopyanov, K. L. Background-free broadband absorption spectroscopy based on interferometric suppression with a sign-inverted waveform. Optica 6, 147–151 (2019).

    Article  ADS  Google Scholar 

  50. Zeng, L. et al. Van der Waals epitaxial growth of mosaic‐like 2D platinum ditelluride layers for room‐temperature mid‐infrared photodetection up to 10.6 µm. Adv. Mater. 32, 2004412 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Li, G. Hu and X. Le for helpful discussions. This research was supported by the National Research Foundation Singapore (Grant No. NRF-CRP15-2015-02). C.-W.Q. acknowledges financial support from the National Research Foundation, Prime Minister’s Office, Singapore under Competitive Research Program Award NRF-CRP22-2019-0006. C.-W.Q. is also supported by a grant (R-261-518-004-720) from Advanced Research and Technology Innovation Centre (ARTIC).

Author information

Authors and Affiliations

Authors

Contributions

J.W., C.-W.Q. and C.L. conceived the project. J.W. did the theoretical analysis, numerical simulation and sample fabrication. J.W. carried out the device characterization with assistance from C.X. and B.D. All authors discussed the results. J.W., C.-W.Q. and C.L. wrote the manuscript with comments from all authors. C.-W.Q. and C.L. supervised the project.

Corresponding authors

Correspondence to Cheng-Wei Qiu or Chengkuo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–27 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Xu, C., Dong, B. et al. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photon. 15, 614–621 (2021). https://doi.org/10.1038/s41566-021-00819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00819-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing