Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures

Abstract

Tunnelling is one of the most fundamental manifestations of quantum mechanics. The recent advent of lightwave-driven scanning tunnelling microscopy has revolutionized ultrafast nanoscience by directly resolving electron tunnelling in electrically conducting samples on the relevant ultrashort length- and timescales. Here, we introduce a complementary approach based on terahertz near-field microscopy to perform ultrafast nano-videography of tunnelling processes even in insulators. The central idea is to probe the evolution of the local polarizability of electron–hole pairs with evanescent terahertz fields, which we detect with subcycle temporal resolution. In a proof of concept, we resolve femtosecond interlayer transport in van der Waals heterobilayers and reveal pronounced variations of the local formation and annihilation of interlayer excitons on deeply subwavelength, nanometre scales. Such contact-free nanoscopy of tunnelling-induced dynamics should be universally applicable to conducting and non-conducting samples and reveal how ultrafast transport processes shape functionalities in a wide range of condensed matter systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probing interlayer tunnelling of photo-carriers by their polarizability.
Fig. 2: Out-of-plane and in-plane polarizability of intralayer and interlayer electron–hole pairs.
Fig. 3: Clocking ultrafast interlayer tunnelling using terahertz emission nanoscopy.
Fig. 4: Resolving nanoscale inhomogeneities of tunnelling efficiency and electron–hole pair lifetimes by ultrafast contact-free nanoscopy.

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding authors upon reasonable request.

References

  1. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  2. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  ADS  Google Scholar 

  3. Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photonics 10, 762–765 (2016).

    Article  ADS  Google Scholar 

  4. Jelic, V. et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 13, 591–598 (2017).

    Article  Google Scholar 

  5. Yoshioka, K. et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields. Nano Lett. 18, 5198–5204 (2018).

    Article  ADS  Google Scholar 

  6. Yoshida, S. et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field. ACS Photonics 6, 1356–1364 (2019).

    Article  Google Scholar 

  7. Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020).

    Article  ADS  Google Scholar 

  8. Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020).

    Article  ADS  Google Scholar 

  9. Müller, M., Martín Sabanés, N., Kampfrath, T. & Wolf, M. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction. ACS Photonics 7, 2046–2055 (2020).

    Article  Google Scholar 

  10. Peller, D. et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photonics 15, 143–147 (2021).

    Article  ADS  Google Scholar 

  11. Patera, L. L., Queck, F., Scheuerer, P. & Repp, J. Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 566, 245–248 (2019).

    Article  ADS  Google Scholar 

  12. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  13. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  ADS  Google Scholar 

  14. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  Google Scholar 

  15. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    Article  ADS  Google Scholar 

  16. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  ADS  Google Scholar 

  17. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  ADS  Google Scholar 

  18. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  19. Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).

    Article  ADS  Google Scholar 

  20. Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).

    Article  ADS  Google Scholar 

  21. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  ADS  Google Scholar 

  22. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 1–29 (2014).

    Article  Google Scholar 

  23. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  ADS  Google Scholar 

  24. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  ADS  Google Scholar 

  25. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    Article  ADS  Google Scholar 

  26. Park, K.-D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).

    Article  ADS  Google Scholar 

  27. Zhang, J. et al. Terahertz nanoimaging of graphene. ACS Photonics 5, 2645–2651 (2018).

    Article  Google Scholar 

  28. Bao, W. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 6, 7993 (2015).

    Article  ADS  Google Scholar 

  29. Jiang, T., Kravtsov, V., Tokman, M., Belyanin, A. & Raschke, M. B. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol. 14, 838–843 (2019).

    Article  ADS  Google Scholar 

  30. Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035–1041 (2018).

    Article  ADS  Google Scholar 

  31. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article  ADS  Google Scholar 

  33. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photonics 8, 841–845 (2014).

    Article  ADS  Google Scholar 

  34. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    Article  ADS  Google Scholar 

  35. Siday, T., Hale, L. L., Hermans, R. I. & Mitrofanov, O. Resonance-enhanced terahertz nanoscopy probes. ACS Photonics 7, 596–601 (2020).

    Article  Google Scholar 

  36. Moon, K. et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 15, 549–552 (2015).

    Article  ADS  Google Scholar 

  37. Kuschewski, F. et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 108, 113102 (2016).

    Article  ADS  Google Scholar 

  38. Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photonics 4, 2676–2680 (2017).

    Article  Google Scholar 

  39. Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    Article  ADS  Google Scholar 

  40. Mastel, S. et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 17, 6526–6533 (2017).

    Article  ADS  Google Scholar 

  41. Yao, Z. et al. Photo-induced terahertz near-field dynamics of graphene/InAs heterostructures. Opt. Express 27, 13611–13623 (2019).

    Article  ADS  Google Scholar 

  42. Chen, X. et al. Modern Scattering‐Type Scanning Near‐Field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  43. Pizzuto, A., Mittleman, D. M. & Klarskov, P. Laser THz emission nanoscopy and THz nanoscopy. Opt. Express 28, 18778–18789 (2020).

    Article  ADS  Google Scholar 

  44. Wang, F. et al. Exciton polarizability in semiconductor nanocrystals. Nat. Mater. 5, 861–864 (2006).

    Article  ADS  Google Scholar 

  45. Steinleitner, P. et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 17, 1455–1460 (2017).

    Article  ADS  Google Scholar 

  46. Tian, T. et al. Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials. Nano Lett. 20, 841–851 (2020).

    Article  ADS  Google Scholar 

  47. Yang, X. L., Guo, S. H., Chan, F. T., Wong, K. W. & Ching, W. Y. Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 43, 1186–1196 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  48. Mooshammer, F. et al. Quantifying nanoscale electromagnetic fields in near-field microscopy by fourier demodulation analysis. ACS Photonics 7, 344–351 (2020).

    Article  Google Scholar 

  49. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  ADS  Google Scholar 

  50. Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    Article  ADS  Google Scholar 

  51. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

  52. Pronin, O. et al. High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36, 4746–4748 (2011).

    Article  ADS  Google Scholar 

  53. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10, 244–247 (2016).

    Article  ADS  Google Scholar 

  54. Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article  ADS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  56. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  57. Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    Article  ADS  Google Scholar 

  58. Zollner, K., Faria Junior, P. E. & Fabian, J. Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides. Phys. Rev. B 100, 195126 (2019).

    Article  ADS  Google Scholar 

  59. Stahn, J., Pietsch, U., Blaha, P. & Schwarz, K. Electric-field-induced charge-density variations in covalently bonded binary compounds. Phys. Rev. B 63, 165205 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Furthmeier for technical assistance and T. F. Heinz for fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID, 314695032—SFB 1277 (Subprojects A05 and B05) and through research grants HU1598/3, HU1598/8 and CO1492/1. P.E.F.J. acknowledges funding by the A. v. Humboldt Foundation and by Capes (Grant No. 99999.000420/2016-06). M.A.H. was supported in part by the US Department of Energy, Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division, AMOS Program. M.G. acknowledges support by the Ministry of Education, Science, Research and Sport of the Slovak Republic (Grant No. VEGA 1/0105/20). J.L.B. acknowledges support by the A. v. Humboldt Foundation and EPSRC (UK) via project EP/S037438/1.

Author information

Authors and Affiliations

Authors

Contributions

M.P. and F.M. fabricated the samples. M.P., F.M., T.S., M.Z., F. Sandner, F. Schiegl, S.M., M.A.H., J.L.B., T.L.C. and R.H. conducted the experiments. P.E.F.J., M.G. and J.F. performed the density functional theory calculations, F.M. performed the finite element simulations, and J.F., T.L.C. and R.H. supervised the study. M.P., F.M. and R.H. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to J. Fabian or R. Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Pavel Jelinek and Feng Wang for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, discussion and Tables 1–3.

41566_2021_813_MOESM2_ESM.mp4

Supplementary Video 1 Temporal evolution of the emission of electromagnetic fields by a time-dependent point-dipole source on a silicon substrate. a, Out-of-plane current density jz corresponding to interlayer charge transfer with a characteristic tunnelling time τtunnel = 200 fs (compare Fig. 3c). b, Simulated far-field waveform based on the current density depicted in a, accounting for the electro-optic detector response. c, Maps of the out-of-plane electric field Ez as a function of the delay time. The snapshots were obtained by superposition of the respective distributions for different frequencies ranging from 0 to 3 THz (see Supplementary Fig. 6 and the Methods section) calculated by the finite element method.

41566_2021_813_MOESM3_ESM.mp4

Supplementary Video 2 Temporal evolution of the emission of electromagnetic fields by a tip-enhanced dipole emitter source on a silicon substrate. a, Out-of-plane current density jz corresponding to interlayer charge transfer with a characteristic tunnelling time τtunnel = 200 fs (compare Fig. 3c). b, Simulated far-field waveform based on the current density depicted in a, accounting for the tip transfer function and electro-optic detector response. c, Maps of the out-of-plane electric field Ez as a function of the delay time. The snapshots including a near-field probe with realistic dimensions were obtained by superposition of the respective distributions for different frequencies ranging from 0 to 3 THz (see Supplementary Fig. 6 and the Methods section) calculated by the finite element method.

41566_2021_813_MOESM4_ESM.mp4

Supplementary Video 3 Subcycle nano-videography of the interlayer exciton formation and annihilation. The height profile and contour lines represent the topography of the heterostructure recorded by atomic force microscopy. The two-dimensional maps of the interlayer eh pair density were obtained by evaluating a series of snapshot images of the magnitudes of the pump-induced changes in electric field \({\Delta}\hat E_1^{{\mathrm{scat}}}\) for a set of delay times after photoexcitation (compare Fig. 4). For each pixel, the corresponding temporal evolution of \({\Delta}\hat E_1^{{\mathrm{scat}}}\) was fitted by a mono-exponential decay curve, which was then colour-coded onto the height profile, for each delay time (see the main text for further details).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plankl, M., Faria Junior, P.E., Mooshammer, F. et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photon. 15, 594–600 (2021). https://doi.org/10.1038/s41566-021-00813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00813-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing